Previous |  Up |  Next

Article

Title: The Lie groupoid analogue of a symplectic Lie group (English)
Author: Pham, David N.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 2
Year: 2021
Pages: 61-81
Summary lang: English
.
Category: math
.
Summary: A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a $t$-symplectic Lie groupoid; the “$t$" is motivated by the fact that each target fiber of a $t$-symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid $\mathcal{G}\rightrightarrows M$, we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid structures on $A\mathcal{G}$ (the associated Lie algebroid) and $t$-symplectic Lie groupoid structures on $\mathcal{G}\rightrightarrows M$. In addition, we also introduce the notion of a symplectic Lie group bundle (SLGB) which is a special case of both a $t$-symplectic Lie groupoid and a Lie group bundle. The basic properties of SLGBs are explored. (English)
Keyword: symplectic Lie groups
Keyword: Lie groupoids
Keyword: symplectic Lie algebroids
MSC: 22A22
MSC: 53D05
idZBL: Zbl 07361066
idMR: MR4306169
DOI: 10.5817/AM2021-2-61
.
Date available: 2021-05-11T14:20:29Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148890
.
Reference: [1] Baues, O., Corté, V.: Symplectic Lie groups, I – III.arXiv:1307.1629 [math.DG]. MR 3499032
Reference: [2] Bott, R., Tu, L.: Differential Forms in Algebraic Topology.Springer, 1982. Zbl 0496.55001, MR 0658304
Reference: [3] Chari, V., Pressley, A.: Quantum Groups.Cambridge University Press, 1994.
Reference: [4] Chevalley, C.: Theory of Lie Groups.Princeton University Press, 1946. MR 0015396
Reference: [5] Chu, B.: Symplectic homogeneous spaces.Trans. Amer. Math. Soc. 197 (1974), 145–159. MR 0342642, 10.1090/S0002-9947-1974-0342642-7
Reference: [6] de Leon, M., Marrero, J., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids.J. Phys. A: Math. Gen. 38 (24) (2005), 241–308. MR 2147171, 10.1088/0305-4470/38/24/R01
Reference: [7] Dufour, J., Zung, N.: Poisson Structures and Their Normal Forms.Berkhäuser Verlag, 2005. MR 2178041
Reference: [8] Kosmann-Schwarzbach, Y., Mackenzie, K.: Differential operators and actions of Lie algebroids.Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, 2002, pp. 213–233. MR 1958838
Reference: [9] Lee, J.M.: Introduction to Smooth Manifolds.Springer Verlag, New York, 2003. MR 1930091
Reference: [10] Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society Lecture Note Series, vol. 213, Cambridge University Press, 2005. Zbl 1078.58011, MR 2157566
Reference: [11] Macknezie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry.London Mathematical Society Lecture Note Series, vol. 124, Cambridge University Press, 1987. MR 0896907
Reference: [12] Marle, C.M.: Differential calculus on a Lie algebroid and Poisson manifolds.arXiv:0804.2451v2 [math.DG], June 200. MR 1969436
Reference: [13] Marle, C.M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds.Dissertationes Math., vol. 457, Polish Academy of Sciences, 2008. MR 2455155, 10.4064/dm457-0-1
Reference: [14] Nest, R., Tsygan, B.: Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems.Asian J. Math. 5 (2001), 599–635. MR 1913813, 10.4310/AJM.2001.v5.n4.a2
Reference: [15] Warner, F.: Foundations of differentiable manifolds and Lie groups.Springer Verlag, 1983. MR 0760450
Reference: [16] Weinstein, A.: Symplectic groupoids and Poisson manifolds.Bull. Amer. Math. Soc. 16 (1) (1987), 101–104. MR 0866024, 10.1090/S0273-0979-1987-15473-5
.

Files

Files Size Format View
ArchMathRetro_057-2021-2_1.pdf 501.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo