Previous |  Up |  Next

Article

Title: Professor Alexander Ženíšek passed away (English)
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 3
Year: 2021
Pages: 319-324
Summary lang: English
.
Category: math
.
MSC: 01A70
idZBL: 07361057
idMR: MR4263153
DOI: 10.21136/AM.2021.0007-21
.
Date available: 2021-05-20T13:31:57Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148895
.
Reference: [1] Doktor, P., Ženíšek, A.: The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions.Appl. Math., Praha 51 (2006), 517-547. Zbl 1164.46322, MR 2261637, 10.1007/s10492-006-0019-5
Reference: [2] Feistauer, M., Ženíšek, A.: Finite element solution of nonlinear elliptic problems.Numer. Math. 50 (1987), 451-475. Zbl 0637.65107, MR 0875168, 10.1007/BF01396664
Reference: [3] Feistauer, M., Ženíšek, A.: Compactness method in finite element theory of nonlinear elliptic problems.Numer. Math. 52 (1988), 147-163. Zbl 0642.65075, MR 0923708, 10.1007/BF01398687
Reference: [4] Klimeš, B., Kracík, J., Ženíšek, A.: Foundations of Physics.VUT, Brno (1972), Czech.
Reference: [5] Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A.: Physical and Mathematical Principles of the Finite Element Method.Rozpravy ČSAV, Prague (1971).
Reference: [6] Kolář, V., Kratochvíl, J., Leitner, F., Ženíšek, A.: Calculation of Planar and Spatial Structures by the Finite Element Method.SNTL, Prague (1979), Czech.
Reference: [7] Synge, J. L.: The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems.Cambridge University Press, Cambridge (1957). Zbl 0079.13802, MR 0097605
Reference: [8] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations.Apl. Mat. 14 (1969), 355-377 Czech. Zbl 0188.22604, MR 0245978, 10.21136/AM.1969.103246
Reference: [9] Ženíšek, A.: A general theorem on triangular finite $C^{(m)}$-elements.RAIRO. Analyse Numérique 8 (1974), 119-127. Zbl 0321.41003, MR 0388731, 10.1051/m2an/197408R201191
Reference: [10] Ženíšek, A.: Curved triangular finite $C^m$-elements.Apl. Mat. 23 (1978), 346-377. Zbl 0404.35041, MR 0502072
Reference: [11] Ženíšek, A.: Discrete forms of Friedrichs' inequalities in the finite element method.RAIRO, Anal. Numér. 15 (1981), 265-286. Zbl 0475.65072, MR 0631681, 10.1051/m2an/1981150302651
Reference: [12] Ženíšek, A.: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations.Computational Mathematics and Applications. Academic Press, London (1990). Zbl 0731.65090, MR 1086876
Reference: [13] Ženíšek, A.: The finite element method for nonlinear elliptic equations with discontinuous coefficients.Numer. Math. 58 (1990), 51-77. Zbl 0709.65081, MR 1069653, 10.1007/BF01385610
Reference: [14] Ženíšek, A.: Variational problems in domains with cusp points.Appl. Math., Praha 38 (1993), 381-403. Zbl 0790.65094, MR 1228514
Reference: [15] Ženíšek, A.: Sobolev Spaces and Their Applications in the Finite Element Method.VUTIUM, Brno (2005).
Reference: [16] Ženíšek, A.: Relativity in the Pocket.Masaryk University, Brno (2015), Czech.
Reference: [17] Ženíšek, A., Hoderová-Zlámalová, J.: Semiregular Hermite tetrahedral finite elements.Appl. Math., Praha 46 (2001), 295-315. Zbl 1066.65118, MR 1842552, 10.1023/A:1013700225774
.

Files

Files Size Format View
AplMat_66-2021-3_1.pdf 950.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo