Title:
|
Remarks on WDC sets (English) |
Author:
|
Pokorný, Dušan |
Author:
|
Zajíček, Luděk |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
62 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
81-94 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study WDC sets, which form a substantial generalization of sets with positive reach and still admit the definition of curvature measures. Main results concern WDC sets $A\subset {\mathbb R}^2$. We prove that, for such $A$, the distance function $d_A= {\rm dist}(\cdot,A)$ is a ``DC aura'' for $A$, which implies that each closed locally WDC set in ${\mathbb R}^2$ is a WDC set. Another consequence is that compact WDC subsets of ${\mathbb R}^2$ form a Borel subset of the space of all compact sets. (English) |
Keyword:
|
distance function |
Keyword:
|
WDC set |
Keyword:
|
DC function |
Keyword:
|
DC aura |
Keyword:
|
Borel complexity |
MSC:
|
26B25 |
idZBL:
|
Zbl 07396212 |
idMR:
|
MR4270468 |
DOI:
|
10.14712/1213-7243.2021.006 |
. |
Date available:
|
2021-07-26T11:13:07Z |
Last updated:
|
2023-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148938 |
. |
Reference:
|
[1] Bangert V.: Sets with positive reach.Arch. Math. (Basel) 38 (1982), no. 1, 54–57. MR 0646321, 10.1007/BF01304757 |
Reference:
|
[2] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR 2041617 |
Reference:
|
[3] Clarke F. H.: Optimization and Nonsmooth Analysis.Classics in Applied Mathematics, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990. Zbl 0696.49002, MR 1058436 |
Reference:
|
[4] DeVore R. A., Lorentz G. G.: Constructive Approximation.Grundlehren der Mathematischen Wissenschaften, 303, Springer, Berlin, 1993. MR 1261635, 10.1007/978-3-662-02888-9_3 |
Reference:
|
[5] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[6] Fu J. H. G.: Tubular neighborhoods in Euclidean spaces.Duke Math. J. 52 (1985), no. 4, 1025–1046. Zbl 0592.52002, MR 0816398 |
Reference:
|
[7] Fu J. H. G.: Integral geometric regularity.in Tensor Valuations and Their Applications in Stochastic Geometry and Imaging, Lecture Notes in Math., 2177, Springer, Cham, 2017, pages 261–299. MR 3702376 |
Reference:
|
[8] Fu J. H. G., Pokorný D., Rataj J.: Kinematic formulas for sets defined by differences of convex functions.Adv. Math. 311 (2017), 796–832. MR 3628231, 10.1016/j.aim.2017.03.003 |
Reference:
|
[9] Hartman P.: On functions representable as a difference of convex functions.Pacific J. Math. 9 (1959), 707–713. MR 0110773, 10.2140/pjm.1959.9.707 |
Reference:
|
[10] Pokorný D., Rataj J.: Normal cycles and curvature measures of sets with d.c. boundary.Adv. Math. 248 (2013), 963–985. MR 3107534, 10.1016/j.aim.2013.08.022 |
Reference:
|
[11] Pokorný D., Rataj J., Zajíček L.: On the structure of WDC sets.Math. Nachr. 292 (2019), no. 7, 1595–1626. MR 3982330, 10.1002/mana.201700253 |
Reference:
|
[12] Pokorný D., Zajíček L.: On sets in ${\mathbb R}^d$ with DC distance function.J. Math. Anal. Appl. 482 (2020), no. 1, 123536, 14 pages. MR 4015277, 10.1016/j.jmaa.2019.123536 |
Reference:
|
[13] Srivastava S. M.: A Course on Borel Sets.Graduate Texts in Mathematics, 180, Springer, New York, 1998. Zbl 0903.28001, MR 1619545, 10.1007/978-3-642-85473-6 |
Reference:
|
[14] Tuy H.: Convex Analysis and Global Optimization.Springer Optimization and Its Applications, 110, Springer, Cham, 2016. Zbl 0904.90156, MR 3560830, 10.1007/978-3-319-31484-6 |
Reference:
|
[15] Veselý L., Zajíček L.: Delta-convex mappings between Banach spaces and applications.Dissertationes Math. (Rozprawy Mat.) 289 (1989), 52 pages. MR 1016045 |
Reference:
|
[16] Zähle M.: Curvature measures and random sets. II.Probab. Theory Relat. Fields 71 (1986), no. 1, 37–58. MR 0814660, 10.1007/BF00366271 |
. |