Previous |  Up |  Next

Article

Title: Relationship among various Vietoris-type and microsimplicial homology theories (English)
Author: Imamura, Takuma
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 3
Year: 2021
Pages: 131-150
Summary lang: English
.
Category: math
.
Summary: In this paper, we clarify the relationship among the Vietoris-type homology theories and the microsimplicial homology theories, where the latter are nonstandard homology theories defined by M.C. McCord (for topological spaces), T. Korppi (for completely regular topological spaces) and the author (for uniform spaces). We show that McCord’s and our homology are isomorphic for all compact uniform spaces and that Korppi’s and our homology are isomorphic for all fine uniform spaces. Our homology shares many good properties with Korppi’s homology. As an example, we outline a proof of the continuity of our homology with respect to uniform resolutions. S. Garavaglia proved that McCord’s homology is isomorphic to Vietoris homology for all compact topological spaces. Inspired by this result, we prove that our homology is isomorphic to uniform Vietoris homology for all precompact uniform spaces and that Korppi’s homology is isomorphic to normal Vietoris homology for all pseudocompact completely regular topological spaces. (English)
Keyword: McCord homology
Keyword: Korppi homology
Keyword: $\mu $-homology
Keyword: Vietoris homology
Keyword: nonstandard analysis
MSC: 54J05
MSC: 55N05
MSC: 55N35
idZBL: Zbl 07396179
idMR: MR4306173
DOI: 10.5817/AM2021-3-131
.
Date available: 2021-07-30T12:26:44Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149016
.
Reference: [1] Dowker, C.H.: Homology groups of relations.Ann. of Math. (2) 56 (1952), no. 1, 84–95. MR 0048030, 10.2307/1969768
Reference: [2] Garavaglia, S.: Homology with equationally compact coefficients.Fund. Math. 100 (1978), no. 1, 89–95. MR 0494066, 10.4064/fm-100-1-89-95
Reference: [3] Imamura, T.: Nonstandard homology theory for uniform spaces.Topology Appl. 209 (2016), 22–29, Corrigendum in DOI:10.13140/RG.2.2.36585.75368. MR 3523460, 10.1016/j.topol.2016.05.016
Reference: [4] Isbell, J.R.: Uniform Spaces.Mathematical Surveys and Monographs, vol. 12, American Mathematical Society, Providence, 1964. Zbl 0124.15601, MR 0170323
Reference: [5] Korppi, T.: A non-standard homology theory with some nice properties.Dubrovnik VI - Geometric Topology, September–October 2007.
Reference: [6] Korppi, T.: On the homology of compact spaces by using non-standard methods.Topology Appl. 157 (2010), 2704–2714. MR 2725362, 10.1016/j.topol.2010.07.023
Reference: [7] Korppi, T.: A new microsimplicial homology theory.viXra:1205.0081, 2012.
Reference: [8] Mardešić, S., Segal, J.: Shape Theory.North-Holland Mathematical Library, vol. 26, North-Holland, Amsterdam-New York-Oxford, 1982. MR 0676973
Reference: [9] McCord, M.C.: Non-standard analysis and homology.Fund. Math. 74 (1972), no. 1, 21–28. MR 0300270, 10.4064/fm-74-1-21-28
Reference: [10] Robinson, A.: Non-standard Analysis.Studies in Logic and the Foundations of Mathematics, vol. 42, North-Holland, Amsterdam, 1966. MR 0205854
Reference: [11] Stroyan, K.D., Luxemburg, W.A.J.: Introduction to The Theory of Infinitesimals.Pure and Applied Mathematics, vol. 72, Academic Press, New York-San Francisco-London, 1976. MR 0491163
Reference: [12] Wattenberg, F.: Nonstandard analysis and the theory of shape.Fund. Math. 98 (1978), no. 1, 41–60. MR 0528354, 10.4064/fm-98-1-41-60
.

Files

Files Size Format View
ArchMathRetro_057-2021-3_1.pdf 571.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo