Previous |  Up |  Next

Article

Title: On an entire function represented by multiple Dirichlet series (English)
Author: Chutani, Lakshika
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 3
Year: 2021
Pages: 279-288
Summary lang: English
.
Category: math
.
Summary: Consider the space $L$ of entire functions represented by multiple Dirichlet series that becomes a non uniformly convex Banach space which is also proved to be dense, countable and separable. Continuing further, for the given space $L$ the characterization of bounded linear transformations in terms of matrix and characterization of linear functional has been obtained. (English)
Keyword: Dirichlet series
Keyword: Banach algebra
MSC: 30B50
MSC: 30D10
DOI: 10.21136/MB.2020.0080-19
.
Date available: 2021-08-18T08:23:11Z
Last updated: 2021-08-18
Stable URL: http://hdl.handle.net/10338.dmlcz/149070
.
Reference: [1] Akanksha, A., Srivastava, G. S.: Spaces of vector-valued Dirichlet series in a half plane.Front. Math. China 9 (2014), 1239-1252. Zbl 1308.30004, MR 3260996, 10.1007/s11464-014-0396-0
Reference: [2] Azpeitia, A. G.: A remark on the Ritt order of entire functions defined by Dirichlet series.Proc. Am. Math. Soc. 12 (1961), 722-723. Zbl 0126.29101, MR 0126534, 10.2307/2034864
Reference: [3] Azpeitia, A. G.: On the maximum modulus and the maximum term of an entire Dirichlet series.Proc. Am. Math. Soc. 12 (1961), 717-721. Zbl 0126.29003, MR 0126533, 10.2307/2034863
Reference: [4] Azpeitia, A. G.: On the Ritt order of entire Dirichlet series.Q. J. Math., Oxf. II. Ser. 15 (1964), 275-277. Zbl 0129.29003, MR 0168736, 10.1093/qmath/15.1.275
Reference: [5] Behnam, H. S., Srivastava, G. S.: Spaces of analytic functions represented by Dirichlet series of two complex variables.Approximation Theory Appl. 18 (2002), 1-14. Zbl 1017.32007, MR 1942346, 10.1007/BF02837109
Reference: [6] Cahen, E.: Sur la fonction $\zeta(s)$ de Riemann et sur des fonctions analogues.Ann. Sci. Éc. Norm. Supér. (3) 11 (1894), 75-164 French \99999JFM99999 25.0702.01. MR 1508903, 10.24033/asens.401
Reference: [7] Dagene, E.: The central index of Dirichlet series.Litov. Mat. Sb. 8 (1968), 503-520 Russian. Zbl 0183.06902, MR 0245763
Reference: [8] Daoud, S.: On the class of entire Dirichlet functions of several complex variables having finite order point.Port. Math. 43 (1986), 417-427. Zbl 0636.46019, MR 0911448
Reference: [9] Estermann, T.: On certain functions represented by Dirichlet series.Proc. Lond. Math. Soc. (2) 27 (1928), 435-448 \99999JFM99999 54.0366.03. MR 1575403, 10.1112/plms/s2-27.1.435
Reference: [10] Janusauskas, A. I.: Elementary theorems on convergence of double Dirichlet series.Sov. Math., Dokl. 18 (1977), 610-614 translation from Dokl. Akad. Nauk. SSSR 234 1977 34-37. Zbl 0388.40003, MR 0442265
Reference: [11] Kong, Y.: On some $q$-orders and $q$-types of Dirichlet-Hadamard product function.Acta Math. Sin., Chin. Ser. Chinese 52 (2009), 1165-1172. Zbl 1212.30004, MR 2640624
Reference: [12] Kong, Y., Gan, H.: On orders and types of Dirichlet series of slow growth.Turk. J. Math. 34 (2010), 1-11. Zbl 1189.30004, MR 2654411
Reference: [13] Kumar, N., Chutani, L., Manocha, G.: Certain results on a class of entire Dirichlet series in two variables.Sci. Magna 11 (2016), 33-40. MR 3817299
Reference: [14] Kumar, N., Manocha, G.: A class of entire Dirichlet series as an FK-space and a Fréchet space.Acta Math. Sci., Ser. B, Engl. Ed. 33 (2013), 1571-1578. Zbl 1313.30007, MR 3116603, 10.1016/S0252-9602(13)60105-8
Reference: [15] Kumar, N., Manocha, G.: On a class of entire functions represented by Dirichlet series.J. Egypt. Math. Soc. 21 (2013), 21-24. Zbl 1277.30004, MR 3040754, 10.1016/j.joems.2012.10.008
Reference: [16] Kumar, N., Manocha, G.: A study of various results for a class of entire Dirichlet series with complex frequencies.Math. Bohem. 143 (2018), 1-9. Zbl 06861588, MR 3778046, 10.21136/MB.2017.0066-16
Reference: [17] Larsen, R.: Banach Algebras: An Introduction.Pure and Applied Mathematics 24. Marcel Dekker, New York (1973). Zbl 0264.46042, MR 0487369
Reference: [18] Larsen, R.: Functional Analysis: An Introduction.Pure and Applied Mathematics 15. Marcel Dekker, New York (1973). Zbl 0261.46001, MR 0461069
Reference: [19] Leonard, I. E.: Banach sequence spaces.J. Math. Anal. Appl. 54 (1976), 245-265. Zbl 0343.46010, MR 0420216, 10.1016/0022-247X(76)90248-1
Reference: [20] Liang, M., Gao, Z.: Convergence and growth of multiple Dirichlet series.Acta Math. Sci., Ser. B, Engl. Ed. 30 (2010), 1640-1648. Zbl 1240.30016, MR 2778633, 10.1016/S0252-9602(10)60157-9
Reference: [21] Rahman, Q. I.: A note on entire functions defined by Dirichlet series.Math. Student 24 (1956), 203-207. Zbl 0082.05801, MR 0086125
Reference: [22] Rahman, Q. I.: On means of entire functions.Q. J. Math., Oxf. II. Ser. 7 (1956), 192-195. Zbl 0073.06601, MR 0095941, 10.1093/qmath/7.1.192
Reference: [23] Rahman, Q. I.: On the lower order of entire functions defined by Dirichlet series.Q. J. Math., Oxf. II. Ser. 7 (1956), 96-99. Zbl 0074.29901, MR 0098830, 10.1093/qmath/7.1.96
Reference: [24] Rahman, Q. I.: On the maximum modulus and the coefficients of an entire Dirichlet series.Tôhoku Math. J., II. Ser. 8 (1956), 108-113. Zbl 0074.29803, MR 0080153, 10.2748/tmj/1178245013
Reference: [25] Rahman, Q. I.: On entire functions defined by a Dirichlet series.Proc. Am. Math. Soc. 10 (1959), 213-215. Zbl 0095.27803, MR 0122968, 10.1090/S0002-9939-1959-0122968-X
Reference: [26] Rahman, Q. I.: On entire functions defined by a Dirichlet series: Correction.Proc. Am. Math. Soc. 11 (1960), 624-625. Zbl 0107.28202, MR 0122969, 10.1090/S0002-9939-1960-0122969-X
Reference: [27] Sarkar, P. K.: On the Gol'dberg order and Gol'dberg type of an entire function of several complex variables represented by multiple Dirichlet series.Indian J. Pure Appl. Math. 13 (1982), 1221-1229. Zbl 0513.32005, MR 0679065
Reference: [28] Tanaka, C.: Note on Dirichlet series. V: On the integral functions defined by Dirichlet series. I.Tôhoku Math. J., II. Ser. 5 (1953), 67-78. Zbl 0053.37502, MR 0057320, 10.2748/tmj/1178245352
Reference: [29] Tanaka, C.: Note on Dirichlet series. VI: On the integral functions defined by Dirichlet series. II.Mem. Sch. Sci. Eng., Waseda Univ. 17 (1953), 85-94. MR 0060013
Reference: [30] Tanaka, C.: Note on Dirichlet series. X: Remark on S. Mandelbrojt's theorem.Proc. Japan Acad. 29 (1953), 423-426. Zbl 0052.30002, MR 0062253, 10.3792/pja/1195570554
Reference: [31] Vaish, S. K.: On the coefficients of entire multiple Dirichlet series of several complex variables.Bull. Math. Soc. Sci. Roum., Nouv. Sér. 46 (2003), 195-202. Zbl 1084.30511, MR 2094187
.

Files

Files Size Format View
MathBohem_146-2021-3_4.pdf 220.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo