| Title:
             | 
Four-dimensional Einstein metrics from biconformal deformations (English) | 
| Author:
             | 
Baird, Paul | 
| Author:
             | 
Ventura, Jade | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
57 | 
| Issue:
             | 
5 | 
| Year:
             | 
2021 | 
| Pages:
             | 
255-283 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. Examples of one particular family have ends which collapse asymptotically to $\mathbb{R}^2$. (English) | 
| Keyword:
             | 
Einstein manifold | 
| Keyword:
             | 
conformal foliation | 
| Keyword:
             | 
semi-conformal map | 
| Keyword:
             | 
biconformal deformation | 
| MSC:
             | 
53C12 | 
| MSC:
             | 
53C18 | 
| MSC:
             | 
53C25 | 
| idZBL:
             | 
Zbl 07442414 | 
| idMR:
             | 
MR4346113 | 
| DOI:
             | 
10.5817/AM2021-5-255 | 
| . | 
| Date available:
             | 
2021-10-06T08:57:36Z | 
| Last updated:
             | 
2022-02-24 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/149132 | 
| . | 
| Reference:
             | 
[1] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds.London Math. Soc. Monographs, New Series, vol. 29, Oxford Univ. Press, 2003. MR 2044031 | 
| Reference:
             | 
[2] Besse, A.: Einstein Manifolds.Springer-Verlag, 1987. Zbl 0613.53001 | 
| Reference:
             | 
[3] Danielo, L.: Structures Conformes, Harmonicité et Métriques d’Einstein.Ph.D. thesis, Université de Bretagne Occidentale, 2004. | 
| Reference:
             | 
[4] Danielo, L.: Construction de métriques d’Einstein à partir de transformations biconformes.Ann. Fac. Sci. Toulouse (6) 15 (3) (2006), 553–588. MR 2246414, 10.5802/afst.1129 | 
| Reference:
             | 
[5] Dieudonné, J.: Foundations of Modern Analysis.Academic Press, 1969. | 
| Reference:
             | 
[6] Hebey, E.: Scalar curvature type problems in Riemannian geometry.Notes of a course given at the University of Rome 3. http://www.u-cergy.fr/rech/pages/hebey/. | 
| Reference:
             | 
[7] Hebey, E.: Introduction à l’analyse non linéaire sur les variétés.Diderot, Paris, 1997. | 
| Reference:
             | 
[8] Hilbert, D.: Die Grundlagen der Physik.Nachr. Ges. Wiss. Göttingen (1915), 395–407. | 
| Reference:
             | 
[9] Hitchin, N.J.: On compact four-dimensional Einstein manifolds.J. Differential Geom. 9 (1974), 435–442. 10.4310/jdg/1214432419 | 
| Reference:
             | 
[10] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differential Geom. 20 (1984), 479–495. Zbl 0576.53028, 10.4310/jdg/1214439291 | 
| Reference:
             | 
[11] Spivak, M.: A Comprehensive Introduction to Riemannian Geometry.2nd ed., Publish or Perish, Wilmongton DE, 1979. | 
| Reference:
             | 
[12] Thorpe, J.A.: Some remarks on the Gauss-Bonnet formula.J. Math. Mech. 18 (1969), 779–786. | 
| Reference:
             | 
[13] Vaisman, I.: Conformal foliations.Kodai Math. J. 2 (1979), 26–37. 10.2996/kmj/1138035963 | 
| Reference:
             | 
[14] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka Math. J. 12 (1960), 21–37. Zbl 0096.37201 | 
| . |