Title:
|
Gradedness of the set of rook placements in $A_{n-1}$ (English) |
Author:
|
Ignatev, Mikhail V. |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
171-182 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A rook placement is a subset of a root system consisting of positive roots with pairwise non-positive inner products. To each rook placement in a root system one can assign the coadjoint orbit of the Borel subgroup of a reductive algebraic group with this root system. Degenerations of such orbits induce a natural partial order on the set of rook placements. We study combinatorial structure of the set of rook placements in $A_{n-1}$ with respect to a slightly different order and prove that this poset is graded. (English) |
Keyword:
|
Root system |
Keyword:
|
rook placement |
Keyword:
|
Borel subgroup |
Keyword:
|
coadjoint orbit |
Keyword:
|
graded poset |
MSC:
|
06A07 |
MSC:
|
17B08 |
MSC:
|
17B22 |
idZBL:
|
Zbl 07426416 |
idMR:
|
MR4285749 |
. |
Date available:
|
2021-11-04T12:10:20Z |
Last updated:
|
2021-12-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149187 |
. |
Reference:
|
[1] Andrè, C.A.M.: The basic character table of the unitriangular group.J. Algebra, 241, 2001, 437-471, 10.1006/jabr.2001.8734 |
Reference:
|
[2] Andrè, C.A.M., Neto, A.M.: Super-characters of finite unipotent groups of types $B_n$, $C_n$ and $D_n$.J. Algebra, 305, 2006, 394-429, 10.1016/j.jalgebra.2006.04.030 |
Reference:
|
[3] Bourbaki, N.: Lie groups and Lie algebras.2002, Springer, Chapters 4--6.. |
Reference:
|
[4] Humphreys, J.E.: Linear algebraic groups, Grad. Texts in Math.21, 1998, Springer, |
Reference:
|
[5] Humphreys, J.E: Reflection groups and Coxeter groups.1990, Cambridge University Press, Cambridge, |
Reference:
|
[6] Ignatyev, M.V.: Combinatorics of $B$-orbits and the Bruhat--Chevalley order on involutions.Transform. Groups, 17, 3, 2012, 747-780, arXiv:math.RT/1101.2189.. 10.1007/s00031-012-9191-8 |
Reference:
|
[7] Ignatyev, M.V.: The Bruhat-Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures.Zapiski Nauchnykh Seminarov POMI, 400, 2012, 166-188, English translation: J. Math. Sci. 192 (2) (2013), 220--231; arXiv:math.RT/1112.2624.. |
Reference:
|
[8] Ignatyev, M.V.: Orthogonal subsets of classical root systems and coadjoint orbits of unipotent groups.Mat. Zametki, 86, 1, 2009, 65-80, English translation: Math. Notes 86 (1) (2009), 65--80; arXiv:math.RT/0904.2841.. |
Reference:
|
[9] Ignatev, M.V.: Orthogonal subsets of root systems and the orbit method.Algebra i Analiz, 22, 5, 2010, 104-130, English translation: St. Petersburg Math. J., 22 (5) (2011), 777--794; arXiv:math.RT/1007.5220.. |
Reference:
|
[10] Ignatyev, M.V., Vasyukhin, A.S.: Rook placements in $A_n$ and combinatorics of $B$-orbit closures.J. Lie Theory, 24, 4, 2014, 931-956, |
Reference:
|
[11] Incitti, F.: Bruhat order on the involutions of classical Weyl groups.2003, Ph.D. thesis, Dipartimento di Matematika ``Guido Castelnuovo'', Universit¸ di Roma ``La Sapienza.''. |
Reference:
|
[12] Incitti, F.: The Bruhat order on the involutions of the symmetric groups.J. Alg. Combin, 20, 3, 2004, 243-261, 10.1023/B:JACO.0000048514.62391.f4 |
Reference:
|
[13] Kerov, S.V.: Rooks on ferrers boards and matrix integrals.Zapiski Nauchnykh Seminarov POMI, 240, 1997, 136-146, English translation: J. Math. Sci., 96 (5) (1999), 3531--3536.. |
Reference:
|
[14] Kirillov, A.A.: Unitary representations of nilpotent Lie groups.Russian Math. Surveys, 17, 1962, 53-110, 10.1070/RM1962v017n04ABEH004118 |
Reference:
|
[15] Kirillov, A.A.: Lectures on the orbit method, Grad. Studies in Math.64, 2004, American Mathematical Soc., 10.1090/gsm/064 |
Reference:
|
[16] Melnikov, A.: $B$-orbit in solution to the equation $X^2=0$ in triangular matrices.J. Algebra, 223, 1, 2000, 101-108, 10.1006/jabr.1999.8056 |
Reference:
|
[17] Melnikov, A.: Description of $B$-orbit closures of order 2 in upper-triangular matrices.Transform. Groups, 11, 2, 2006, 217-247, 10.1007/s00031-004-1111-0 |
Reference:
|
[18] Panov, A.N.: Involutions in $S_n$ and associated coadjoint orbits.Zapiski Nauchnykh Seminarov POMI, 349, 2007, 150-173, English translation: J. Math. Sci. 151 (3) (2008), 3018--3031.. |
. |