Previous |  Up |  Next

Article

Title: A generalisation of Amitsur's A-polynomials (English)
Author: Owen, Adam
Author: Pumplün, Susanne
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 2
Year: 2021
Pages: 281-289
Summary lang: English
.
Category: math
.
Summary: We find examples of polynomials $f\in D[t;\sigma ,\delta ]$ whose eigenring $\mathcal {E}(f)$ is a central simple algebra over the field $F = C \cap \mathrm {Fix}(\sigma ) \cap \mathrm {Const}(\delta )$. (English)
Keyword: Skew polynomial ring
Keyword: reducible skew polynomials
Keyword: eigenspace
Keyword: nonassociative algebra
Keyword: semisimple Artinian ring.
MSC: 16S36
MSC: 17A35
MSC: 17A36
MSC: 17A60
idZBL: Zbl 07426424
idMR: MR4285758
.
Date available: 2021-11-04T12:29:01Z
Last updated: 2021-12-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149195
.
Reference: [1] Albert, A.A.: On nonassociative division algebras.Transactions of the American Mathematical Society, 72, 2, 1952, 296-309, JSTOR, 10.1090/S0002-9947-1952-0047027-4
Reference: [2] Amitsur, A.S.: Differential polynomials and division algebras.Annals of Mathematics, 1954, 245-278, JSTOR, 10.2307/1969691
Reference: [3] Amitsur, A.S.: Non-commutative cyclic fields.Duke Mathematical Journal, 21, 1, 1954, 87-105, Duke University Press, 10.1215/S0012-7094-54-02111-0
Reference: [4] Amitsur, A.S.: Generic splitting fields of central simple algebras.Annals of Mathematics, 62, 2, 1955, 8-43, JSTOR, 10.2307/2007098
Reference: [5] Bourbaki, N.: Elements of mathematics.2003, Springer,
Reference: [6] Brown, C., Pumplün, S.: How a nonassociative algebra reflects the properties of a skew polynomial.Glasgow Mathematical Journal, 63, 1, 2021, 6-26, Cambridge University Press, 10.1017/S0017089519000478
Reference: [7] Brown, C.: Petit algebras and their automorphisms.2018, PhD Thesis, University of Nottingham. Online at arXiv:1806.00822.
Reference: [8] Carcanague, J.: Quelques résultats sur les anneaux de Ore.CR Acad. Sci. Paris Sr. AB, 269, 1969, A749-A752,
Reference: [9] Cohn, P.M.: Noncommutative unique factorization domains.Transactions of the American Mathematical Society, 109, 2, 1963, 313-331, 10.1090/S0002-9947-1963-0155851-X
Reference: [10] Gòmez-Torrecillas, J., Lobillo, F. J., Navarro, G.: Computing the bound of an Ore polynomial. Applications to factorization.Journal of Symbolic Computation, 92, 2019, 269-297, Elsevier, 10.1016/j.jsc.2018.04.018
Reference: [11] Gòmez-Torrecillas, J.: Basic module theory over non-commutative rings with computational aspects of operator algebras. With an appendix by V. Levandovskyy..Algebraic and Algorithmic Aspects of Differential and Integral Operators. AADIOS 2012. Lecture Notes in Computer Science, 8372, 2014, 23-82, Springer,
Reference: [12] Goodearl, K. R., Bruce, J. W., Warfield, R. B.: An introduction to noncommutative Noetherian rings.61, 2004, Cambridge University Press,
Reference: [13] Jacobson, N.: Finite-dimensional division algebras over fields.1996, Springer,
Reference: [14] Jacobson, N.: The theory of rings.2, 1943, American Mathematical Society,
Reference: [15] McConnell, J.C., Robson, C.J., Small, L.W.: Noncommutative noetherian rings.30, 2001, American Mathematical Soc.,
Reference: [16] Ore, O.: Theory of non-commutative polynomials.Annals of Mathematics, 1933, 480-508, JSTOR, Zbl 0007.15101, 10.2307/1968173
Reference: [17] Owen, A.: On the right nucleus of Petit algebras.PhD Thesis, University of Nottingham, in preparation..
Reference: [18] Pumplün, S.: Algebras whose right nucleus is a central simple algebra.Journal of Pure and Applied Algebra, 222, 9, 2018, 2773-2783, Elsevier, 10.1016/j.jpaa.2017.10.019
.

Files

Files Size Format View
ActaOstrav_29-2021-2_10.pdf 362.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo