Previous |  Up |  Next

Article

Title: Strong $\mathbf {X}$-robustness of interval max-min matrices (English)
Author: Myšková, Helena
Author: Plavka, Ján
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 4
Year: 2021
Pages: 594-612
Summary lang: English
.
Category: math
.
Summary: In max-min algebra the standard pair of operations plus and times is replaced by the pair of operations maximum and minimum, respectively. A max-min matrix $A$ is called strongly robust if the orbit $x,A\otimes x, A^2\otimes x,\dots$ reaches the greatest eigenvector with any starting vector. We study a special type of the strong robustness called the strong \textit{\textbf{X}}-robustness, the case that a starting vector is limited by a lower bound vector and an upper bound vector. The equivalent condition for the strong \textit{\textbf{X}}-robustness is introduced and efficient algorithms for verifying the strong \textit{\textbf{X}}-robustness is described. The strong \textit{\textbf{X}}-robustness of a max-min matrix is extended to interval vectors \textit{\textbf{X}} and interval matrices \textit{\textbf{A}} using for-all-exists quantification of their interval and matrix entries. A complete characterization of AE/EA strong \textit{\textbf{X}}-robustness of interval circulant matrices is presented. (English)
Keyword: max-min algebra
Keyword: interval matrix
Keyword: strong robustness
Keyword: AE(EA) robustness
MSC: 15A18
MSC: 15A80
MSC: 93C55
idZBL: Zbl 07478630
idMR: MR4332883
DOI: 10.14736/kyb-2021-4-0594
.
Date available: 2021-11-04T12:54:39Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149210
.
Reference: [1] Butkovič, P., Cuninghame-Green, R. A.: On matrix powers in max-algebra..Linear Algebra Appl 421 (2007), 370-381.
Reference: [2] Butkovič, P., Cuninghame-Green, R. A., Gaubert, S.: Reducible spectral theory with applications to the robustness of matrices in max-algebra..SIAM J. Matrix Anal. A 21 (2009), 1412-1431.
Reference: [3] Butkovič, P., Schneider, H., Sergeev, S.: Recognising weakly stable matrices..SIAM J. Control Optim. 50 (2012), 3029-3051.
Reference: [4] Cechlárová, K.: On the powers of matrices in bottleneck/fuzzy algebra..Linear Algebra Appl. 175 (1992), 63-73. Zbl 0866.15009,
Reference: [5] Gavalec, M., Zimmermann, K.: Classification of solutions to systems of two-sided equations with interval coefficients..Int. J. Pure Appl. Math. 45 (2008), 533-542. Zbl 1154.65036
Reference: [6] Gavalec, M.: Periods of special fuzzy matrices..Tatra Mt. Math. Publ. 16 (1999), 47-60.
Reference: [7] Gavalec, M.: Periodicity in Extremal Algebra..Gaudeamus, Hradec Králové 2004.
Reference: [8] Gavalec, M., Plavka, J., Tomášková, H.: Interval eigenproblem in max-min algebra..Lin. Algebra Appl. 440 (2014), 24-33.
Reference: [9] Golan, J. S.: Semi-rings and Their Applications..Springer, Berlin 1999.
Reference: [10] Heidergott, B., Olsder, G.-J., Woude, J. van der: Max-plus at Work..Princeton University Press, Princeton 2005.
Reference: [11] Hladík, M.: AE solutions and AE solvability to general interval linear systems..Linear Algebra Appl. 465 (2015), 221-238.
Reference: [12] Kolokoltsov, V. N., Maslov, V. P.: Idempotent Analysis and its Applications..Kluwer, Dordrecht 1997. Zbl 0941.93001
Reference: [13] Molnárová, M., Myšková, H., Plavka, J.: The robustness of interval fuzzy matrices..Linear Algebra Appl. 438 (2013), 3350-3364.
Reference: [14] Myšková, H.: On an algorithm for testing T4 solvability of max-plus interval systems..Kybernetika 48 (2012), 924-938.
Reference: [15] Myšková, H., Plavka, J.: X-robustness of interval circulant matrices in fuzzy algebra..Linear Algebra Appl. 438 (2013), 2757-2769.
Reference: [16] Myšková, H., Plavka, J.: The robustness of interval matrices in max-plus algebra..Lin. Algebra Appl. 445 (2013), 85-102.
Reference: [17] Myšková, H., Plavka, J.: \textit{\textbf{X}}$^{AE}$ and \textit{\textbf{X}}$^{EA}$ robustness of max-min matrices..Discrete Appl Math 267 (2019), 142-150.
Reference: [18] Myšková, H., Plavka, J.: AE and EA robustness of interval circulant matrices in max-min algebra..Fuzzy Sets Syst. 384 (2020), 91-104.
Reference: [19] Plavka, J.: l-parametric Eigenproblem in max-algebra..Discrete Appl Math 150 (2005), 16-28. 10.1016/j.dam.2005.02.017
Reference: [20] Plavka, J., Szabó, P.: On the $\lambda$-robustness of matrices over fuzzy algebra..Discrete Appl. Math. 159 (2011), 381-388. Zbl 1225.15027, 10.1016/j.dam.2010.11.020
Reference: [21] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices..Discrete Appl. Math. 160 (2012), 640-647. 10.1016/j.dam.2011.11.010
Reference: [22] Plavka, J.: The weak robustness of interval matrices in max-plus algebra..Discrete Appl. Math. 173 (2014), 92-101.
Reference: [23] Plavka, J.: Computing the greatest {\bf X}-eigenvector of a matrix in max-min algebra..Kybernetika 52 (2016), 1-14.
Reference: [24] Semančíková, B.: Orbits in max-min algebra..Linear Algebra Appl. 414 (2006), 38-63.
Reference: [25] Tan, Yi-Jia: Eigenvalues and eigenvectors for matrices over distributive lattices..Linear Algebra Appl. 283 (1998), 257-272. Zbl 0932.15005,
Reference: [26] Tan, Yi-Jia: On the eigenproblem of matrices over distributive lattices..Linear Algebra Appl 374 (2003), 87-106.
Reference: [27] Zimmernann, K.: Extremální algebra (in Czech)..Ekon. ústav ČSAV Praha, 1976.
.

Files

Files Size Format View
Kybernetika_57-2021-4_3.pdf 486.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo