Previous |  Up |  Next

Article

Title: The convergence of the core of a fuzzy exchange economy (English)
Author: Zhang, Xia
Author: Sun, Hao
Author: Esangbedo, Moses Olabhele
Author: Jin, Xuanzhu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 4
Year: 2021
Pages: 671-687
Summary lang: English
.
Category: math
.
Summary: This paper focuses on a new model called fuzzy exchange economy (FXE), which integrates fuzzy consumption, fuzzy initial endowment and the agent's fuzzy preference (vague attitude) in the fuzzy consumption set. Also, the existence of the fuzzy competitive equilibrium for the FXE is verified through a related pure exchange economy. We define a core-like concept (called weak fuzzy core) of the FXE and prove that any fuzzy competitive allocation belongs to the weak fuzzy core. The fuzzy replica economy, which is the $r$-fold repetition of the FXE, is considered. Finally, we show that the weak fuzzy core of the $r$-fold fuzzy replica economy, i. e., the set of all fuzzy allocations which cannot be blocked by any coalition of agents, converges to the set of fuzzy competitive allocations of the FXE as $r$ becomes large. (English)
Keyword: pure exchange economy
Keyword: fuzzy competitive equilibrium
Keyword: fuzzy replica economy
Keyword: weak fuzzy core
Keyword: fuzzy Edgeworth equilibrium
MSC: 91A12
MSC: 91B08
MSC: 91B50
idZBL: Zbl 07478634
idMR: MR4332887
DOI: 10.14736/kyb-2021-4-0671
.
Date available: 2021-11-04T13:00:33Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149214
.
Reference: [1] Arrow, K. J., Debreu, G.: Existence of an equilibrium for a competitive economy..Econometrica 22 (1954), 265-290.
Reference: [2] Aubin, J. P.: Cooperative fuzzy games..Math. Oper. Res. 6 (1981), 1-13.
Reference: [3] Anello, G., Donato, M. B., Milasi, M.: A quasi-variational approach to a competitive economic equilibrium problem without strong monotonicity assumption..J. Global Optim. 48 (2010), 279-287.
Reference: [4] Anello, G., Donato, M. B., Milasi, M.: Variational methods for equilibrium problems involving quasi-concave utility functions..Optim. Engrg. 13 (2012), 169-179.
Reference: [5] Chanas, S., Kasperski, A.: On two single machine scheduling problems with fuzzy processing times and fuzzy due dates..Europ. J. Oper. Res. 147 (2003), 281-296.
Reference: [6] Debreu, G., Scarf, H.: A limit theorem on the core of an economy..Int. Econom. Rev. 4 (1963), 235-246.
Reference: [7] Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications..Academic Press, NY, London 1980. Zbl 0444.94049
Reference: [8] Donato, M. B., Milasi, M., Vitanza, C.: Quasi-variational approach of a competitive economic equilibrium problem with utility function: existence of equilibrium..Math. Models Methods Appl. Sci. 18 (2008), 351-367.
Reference: [9] Donato, M. B., Milasi, M., Vitanza, C.: On the study of an economic equilibrium with variational inequality arguments..J. Optim. Theory Appl. 168 (2016), 646-660.
Reference: [10] Donato, M. B., Milasi, M., Villanacci, A.: Restricted participation on financial markets: a general equilibrium approach using variational inequality methods..Networks Spatial Econom. (2020), 1-33.
Reference: [11] Edgeworth, F. Y.: Mathematical psychics..Kegan Paul, London 1881.
Reference: [12] Gale, D.: The law of supply and demand..Math, Scandinav. 3 (1955), 155-169.
Reference: [13] Heilpern, S.: The expected value of a fuzzy number..Fuzzy Sets and Systems 47 (1992), 81-86.
Reference: [14] McKenzie, L. W.: On the existence of general equilibrium for a competitive market..Econometrica 27 (1959), 54-71.
Reference: [15] Mallozzi, L., Scalzo, V., Tijs, S.: Fuzzy interval cooperative games..Fuzzy Sets and Systems 165 (2011), 98-105.
Reference: [16] Milasi, M., Puglisi, A., Vitanza, C.: On the study of the economic equilibrium problem through preference relations..J. Math. Anal. Appl. 477 (2019), 153-162.
Reference: [17] Nash, J. F.: Equilibrium points in n-person games..Proc. National Acad. Sci. 36 (1950), 48-49.
Reference: [18] Nikaido, H.: On the classical multilateral exchange problem..Metroeconomica 8 (1956), 135-145.
Reference: [19] Rim, D. I., Kim, W. K.: A fixed point theorem and existence of equilibrium for abstract economies..Bull. Austral. Math. Soc. 45 (1992), 385-394.
Reference: [20] Shapley, L. S., Shubik, M.: On market games..J. Econom. Theory 1 (1969), 9-25.
Reference: [21] Taleshian, A., Rezvani, S.: Multiplication operation on trapezoidal fuzzy numbers..J. Phys. Sci. 15 (2011), 17-26.
Reference: [22] Urai, K., Murakami, H.: Replica core equivalence theorem: An extension of the Debreu-Scarf limit theorem to double infinity monetary economies..J. Math. Econom. 66 (2016), 83-88.
Reference: [23] Wald, A.: On some systems of equations of mathematical economics..Econometrica 19 (1951), 368-403.
Reference: [24] Walras, L.: Elements d'economie politique pure..Corbaz, Lausanne 1874.
Reference: [25] Zhang, X., Sun, H., Xu, G. J., Hou, D. S.: On the core, nucleolus and bargaining sets of cooperative games with fuzzy payoffs..J. Intell. Fuzzy Systems 36 (2019), 6129-6142.
Reference: [26] Zhang, X., Sun, H., Jin, X. Z., Esangbedo, M. O.: Existence of an equilibrium for pure exchange economy with fuzzy preferences..J. Intell. Fuzzy Systems 39 (2020), 2737-2752.
Reference: [27] Zhang, X., Sun, H., Esangbedo, M. O.: On the core, bargaining set and the set of competitive allocations of fuzzy exchange economy with a continuum of agents..Int. J. Uncertainty, Fuzziness Knowledge-Based Systems 28 (2020), 1003-1021.
.

Files

Files Size Format View
Kybernetika_57-2021-4_7.pdf 444.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo