Previous |  Up |  Next

Article

Title: László Lovász a jeho matematika (Abelova cena za rok 2021) (Czech)
Title: László Lovász and his mathematics (The 2021 Abel Prize) (English)
Author: Nešetřil, Jaroslav
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 66
Issue: 3
Year: 2021
Pages: 157-167
Summary lang: Czech
.
Category: math
.
Summary: Tento článek je napsán u příležitosti udělení Abelovy ceny za rok 2021 László Lovászovi. (Czech)
MSC: 01A70
MSC: 68-xx
idZBL: Zbl 07675627
.
Date available: 2021-11-08T15:06:45Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/149219
.
Reference: [1] Aigner, M., Ziegler, G.: Proofs from THE BOOK.. Springer, 1998. Zbl 0905.00001
Reference: [2] Alon, N., Kříž, I., Nešetřil, J.: How to color shift hypergraphs.. Stud. Sci. Math. Hungar. 30 (1995), 1–11.
Reference: [3] Bernshteyn, A.: Measurable versions of the Lovász local lemma and measurable graph colorings.. Adv. Math. 353 (2019), 153–223. MR 3979016, 10.1016/j.aim.2019.06.031
Reference: [4] Borgs, Ch., Chayes, J., Lovász, L., Sós, V. T., Vesztergombi, K.: Counting graph homomorphisms.. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds.): Topics in discrete mathematics, Springer, 2006, 315–371. MR 2249277
Reference: [5] Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions.. In: Infinite and finite sets, Colloquia Mathematica Societatis János Bolyai 10, North-Holland, 1975, 609–627.
Reference: [6] Freedman, M., Lovász, L., Schrijver, L.: Reflection positivity, rank connectivity, and homomorphism of graphs.. J. Amer. Math. Soc. 20 (2007), 37–51. MR 2257396, 10.1090/S0894-0347-06-00529-7
Reference: [7] Graham, R. L., Grötschel, M., Lovász, L.: Handbook of combinatorics.. Elsevier, 1995.
Reference: [8] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization.. Springer, 1988.
Reference: [9] Hell, P., Nešetřil, J.: Graphs and homomorphisms.. Oxford University Press, 2006. MR 2089014
Reference: [10] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications.. Bull. Amer. Math. Soc. 43 (2006), 439–561. MR 2247919, 10.1090/S0273-0979-06-01126-8
Reference: [11] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.. Ann. of Math. 164 (2006), 51–229. MR 2233847, 10.4007/annals.2006.164.51
Reference: [12] Lenstra, A. K., Lenstra, A. W., Lovász, L.: Factoring polynomials with rational coefficients.. Math. Ann. 261 (1982), 515–534. 10.1007/BF01457454
Reference: [13] Lovász, L.: Operations with structures.. Acta Math. Hungar. 18 (1967), 321–328. 10.1007/BF02280291
Reference: [14] Lovász, L.: On chromatic number of graphs and set systems.. Acta Math. Hungar. 19 (1968), 59–67. 10.1007/BF01894680
Reference: [15] Lovász, L.: On the cancellation law among finite relational structures.. Period. Math. Hungar. 1 (1971), 145–156. 10.1007/BF02029172
Reference: [16] Lovász, L.: A characterization of perfect graphs.. J. Combin. Theory Ser. B 13 (1972), 95–98. 10.1016/0095-8956(72)90045-7
Reference: [17] Lovász, L.: A note on the line reconstruction problem.. J. Combin. Theory Ser. B 13 (1972), 309–310. 10.1016/0095-8956(72)90068-8
Reference: [18] Lovász, L.: Flats in matroids and geometric graphs.. In: Combinatorial Surveys, Proc. 6th British Comb. Conf., Academic Press, 1977, 45–86.
Reference: [19] Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy.. J. Combin. Theory Ser. A 25 (1978), 319–324. 10.1016/0097-3165(78)90022-5
Reference: [20] Lovász, L.: Combinatorial problems and exercises.. North-Holland, 1979.
Reference: [21] Lovász, L.: On the Shannon capacity of graphs.. IEEE Trans. Inform. Theory 25 (1979), 1–7. 10.1109/TIT.1979.1055985
Reference: [22] Lovász, L.: Large networks and graph limits.. American Mathematical Society, 2012. MR 3363148
Reference: [23] Lovász, L.: Graphs and geometry.. American Mathematical Society, 2019. MR 3967118
Reference: [24] Lovász, L., Nešetřil, J., Pultr, A.: On a product dimension of graphs.. J. Combin. Theory Ser. B 29 (1980), 47–67. 10.1016/0095-8956(80)90043-X
Reference: [25] Lovász, L., Plummer, M.: Matching theory.. North-Holland, 1986.
Reference: [26] Lovász, L., Szegedy, M.: Szemerédi’s lemma for the analyst.. Geom. Funct. Anal. 17 (2007), 252–270. MR 2306658, 10.1007/s00039-007-0599-6
Reference: [27] Matoušek, J.: Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry.. Springer, 2003. MR 1988723
Reference: [28] Matoušek, J.: Thirty-three miniatures. Mathematical and algorithmic applications of linear algebra.. American Mathematical Society, 2010. MR 2656313
Reference: [29] Müller, V.: The edge reconstruction hypothesis is true for graphs with more than $n\cdot \log n$ edges.. J. Combin. Theory Ser. B 22 (1977), 281–283. 10.1016/0095-8956(77)90074-0
Reference: [30] Nešetřil, J.: A combinatorial classic – sparse graphs with high chromatic number.. In: Lovász, L., Ruzsa, I. Z., Sós, V. T. (eds.): Erdős centennial, Springer, 2013, 383–407. MR 3203606
Reference: [31] Odlyzko, A. M., te Riele, H. J. J.: Disproof of the Mertens conjecture.. J. Reine Angew. Math. 357 (1985), 138–160.
.

Files

Files Size Format View
PokrokyMFA_66-2021-3_2.pdf 1.258Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo