Title:
|
László Lovász a jeho matematika (Abelova cena za rok 2021) (Czech) |
Title:
|
László Lovász and his mathematics (The 2021 Abel Prize) (English) |
Author:
|
Nešetřil, Jaroslav |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
157-167 |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
Tento článek je napsán u příležitosti udělení Abelovy ceny za rok 2021 László Lovászovi. (Czech) |
MSC:
|
01A70 |
MSC:
|
68-xx |
idZBL:
|
Zbl 07675627 |
. |
Date available:
|
2021-11-08T15:06:45Z |
Last updated:
|
2023-09-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149219 |
. |
Reference:
|
[1] Aigner, M., Ziegler, G.: Proofs from THE BOOK.. Springer, 1998. Zbl 0905.00001 |
Reference:
|
[2] Alon, N., Kříž, I., Nešetřil, J.: How to color shift hypergraphs.. Stud. Sci. Math. Hungar. 30 (1995), 1–11. |
Reference:
|
[3] Bernshteyn, A.: Measurable versions of the Lovász local lemma and measurable graph colorings.. Adv. Math. 353 (2019), 153–223. MR 3979016, 10.1016/j.aim.2019.06.031 |
Reference:
|
[4] Borgs, Ch., Chayes, J., Lovász, L., Sós, V. T., Vesztergombi, K.: Counting graph homomorphisms.. In: Klazar, M., Kratochvíl, J., Loebl, M., Matoušek, J., Valtr, P., Thomas, R. (eds.): Topics in discrete mathematics, Springer, 2006, 315–371. MR 2249277 |
Reference:
|
[5] Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions.. In: Infinite and finite sets, Colloquia Mathematica Societatis János Bolyai 10, North-Holland, 1975, 609–627. |
Reference:
|
[6] Freedman, M., Lovász, L., Schrijver, L.: Reflection positivity, rank connectivity, and homomorphism of graphs.. J. Amer. Math. Soc. 20 (2007), 37–51. MR 2257396, 10.1090/S0894-0347-06-00529-7 |
Reference:
|
[7] Graham, R. L., Grötschel, M., Lovász, L.: Handbook of combinatorics.. Elsevier, 1995. |
Reference:
|
[8] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization.. Springer, 1988. |
Reference:
|
[9] Hell, P., Nešetřil, J.: Graphs and homomorphisms.. Oxford University Press, 2006. MR 2089014 |
Reference:
|
[10] Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications.. Bull. Amer. Math. Soc. 43 (2006), 439–561. MR 2247919, 10.1090/S0273-0979-06-01126-8 |
Reference:
|
[11] Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem.. Ann. of Math. 164 (2006), 51–229. MR 2233847, 10.4007/annals.2006.164.51 |
Reference:
|
[12] Lenstra, A. K., Lenstra, A. W., Lovász, L.: Factoring polynomials with rational coefficients.. Math. Ann. 261 (1982), 515–534. 10.1007/BF01457454 |
Reference:
|
[13] Lovász, L.: Operations with structures.. Acta Math. Hungar. 18 (1967), 321–328. 10.1007/BF02280291 |
Reference:
|
[14] Lovász, L.: On chromatic number of graphs and set systems.. Acta Math. Hungar. 19 (1968), 59–67. 10.1007/BF01894680 |
Reference:
|
[15] Lovász, L.: On the cancellation law among finite relational structures.. Period. Math. Hungar. 1 (1971), 145–156. 10.1007/BF02029172 |
Reference:
|
[16] Lovász, L.: A characterization of perfect graphs.. J. Combin. Theory Ser. B 13 (1972), 95–98. 10.1016/0095-8956(72)90045-7 |
Reference:
|
[17] Lovász, L.: A note on the line reconstruction problem.. J. Combin. Theory Ser. B 13 (1972), 309–310. 10.1016/0095-8956(72)90068-8 |
Reference:
|
[18] Lovász, L.: Flats in matroids and geometric graphs.. In: Combinatorial Surveys, Proc. 6th British Comb. Conf., Academic Press, 1977, 45–86. |
Reference:
|
[19] Lovász, L.: Kneser’s conjecture, chromatic number, and homotopy.. J. Combin. Theory Ser. A 25 (1978), 319–324. 10.1016/0097-3165(78)90022-5 |
Reference:
|
[20] Lovász, L.: Combinatorial problems and exercises.. North-Holland, 1979. |
Reference:
|
[21] Lovász, L.: On the Shannon capacity of graphs.. IEEE Trans. Inform. Theory 25 (1979), 1–7. 10.1109/TIT.1979.1055985 |
Reference:
|
[22] Lovász, L.: Large networks and graph limits.. American Mathematical Society, 2012. MR 3363148 |
Reference:
|
[23] Lovász, L.: Graphs and geometry.. American Mathematical Society, 2019. MR 3967118 |
Reference:
|
[24] Lovász, L., Nešetřil, J., Pultr, A.: On a product dimension of graphs.. J. Combin. Theory Ser. B 29 (1980), 47–67. 10.1016/0095-8956(80)90043-X |
Reference:
|
[25] Lovász, L., Plummer, M.: Matching theory.. North-Holland, 1986. |
Reference:
|
[26] Lovász, L., Szegedy, M.: Szemerédi’s lemma for the analyst.. Geom. Funct. Anal. 17 (2007), 252–270. MR 2306658, 10.1007/s00039-007-0599-6 |
Reference:
|
[27] Matoušek, J.: Using the Borsuk-Ulam theorem. Lectures on topological methods in combinatorics and geometry.. Springer, 2003. MR 1988723 |
Reference:
|
[28] Matoušek, J.: Thirty-three miniatures. Mathematical and algorithmic applications of linear algebra.. American Mathematical Society, 2010. MR 2656313 |
Reference:
|
[29] Müller, V.: The edge reconstruction hypothesis is true for graphs with more than $n\cdot \log n$ edges.. J. Combin. Theory Ser. B 22 (1977), 281–283. 10.1016/0095-8956(77)90074-0 |
Reference:
|
[30] Nešetřil, J.: A combinatorial classic – sparse graphs with high chromatic number.. In: Lovász, L., Ruzsa, I. Z., Sós, V. T. (eds.): Erdős centennial, Springer, 2013, 383–407. MR 3203606 |
Reference:
|
[31] Odlyzko, A. M., te Riele, H. J. J.: Disproof of the Mertens conjecture.. J. Reine Angew. Math. 357 (1985), 138–160. |
. |