Previous |  Up |  Next

Article

Title: Pairs of square-free values of the type $n^2+1$, $n^2+2$ (English)
Author: Dimitrov, Stoyan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 991-1009
Summary lang: English
.
Category: math
.
Summary: We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number. (English)
Keyword: square-free number
Keyword: asymptotic formula
Keyword: Kloosterman sum
MSC: 11L05
MSC: 11N25
MSC: 11N37
idZBL: Zbl 07442468
idMR: MR4339105
DOI: 10.21136/CMJ.2021.0165-20
.
Date available: 2021-11-08T15:58:12Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149232
.
Reference: [1] Carlitz, L.: On a problem in additive arithmetic. II.Q. J. Math., Oxf. Ser. 3 (1932), 273-290. Zbl 0006.10401, 10.1093/qmath/os-3.1.273
Reference: [2] Dimitrov, S. I.: Consecutive square-free numbers of the form $[n^c],[n^c]+1$.JP J. Algebra Number Theory Appl. 40 (2018), 945-956. Zbl 1417.11145, 10.17654/NT040060945
Reference: [3] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $[\alpha n],[\alpha n]+1$.Proc. Jangjeon Math. Soc. 22 (2019), 463-470. Zbl 1428.11163, MR 3994243, 10.17777/pjms2019.22.3.463
Reference: [4] Dimitrov, S. I.: Consecutive square-free values of the form $[\alpha p],[\alpha p]+1$.Proc. Jangjeon Math. Soc. 23 (2020), 519-524. MR 4169549
Reference: [5] Dimitrov, S. I.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2+y^2+1,x^2+y^2+2$ are square-free.Acta Arith. 194 (2020), 281-294. Zbl 07221818, MR 4096105, 10.4064/aa190118-25-7
Reference: [6] Estermann, T.: Einige Sätze über quadratfreie Zahlen.Math. Ann. 105 (1931), 653-662 German. Zbl 0003.15001, MR 1512732, 10.1007/BF01455836
Reference: [7] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers.Math. Ann. 266 (1984), 251-259. Zbl 0514.10038, MR 0730168, 10.1007/BF01475576
Reference: [8] Heath-Brown, D. R.: Square-free values of $n^2+1$.Acta Arith. 155 (2012), 1-13. Zbl 1312.11077, MR 2982423, 10.4064/aa155-1-1
Reference: [9] Iwaniec, H., Kowalski, E.: Analytic Number Theory.Colloquium Publications 53. American Mathematical Society (2004). Zbl 1059.11001, MR 2061214, 10.1090/coll/053
Reference: [10] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers.Available at https://arxiv.org/abs/1212.3150v2 (2014), 28 pages.
Reference: [11] Tolev, D. I.: On the exponential sum with square-free numbers.Bull. Lond. Math. Soc. 37 (2005), 827-834. Zbl 1099.11042, MR 2186715, 10.1112/S0024609305004753
Reference: [12] Tolev, D. I.: Lectures on Elementary and Analytic Number Theory. II.St. Kliment Ohridski University Press, Sofia (2016), Bulgarian.
.

Files

Files Size Format View
CzechMathJ_71-2021-4_5.pdf 255.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo