Previous |  Up |  Next

Article

Title: Piecewise hereditary algebras under field extensions (English)
Author: Li, Jie
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1025-1034
Summary lang: English
.
Category: math
.
Summary: Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$. (English)
Keyword: piecewise hereditary algebra
Keyword: Galois extension
Keyword: directing object
MSC: 16E35
MSC: 16G10
idZBL: Zbl 07442471
idMR: MR4339108
DOI: 10.21136/CMJ.2021.0183-20
.
Date available: 2021-11-08T15:59:32Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149235
.
Reference: [1] Assem, I., Simson, D., Skowrońsky, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [2] Chen, X.-W., Ringel, C. M.: Hereditary triangulated categories.J. Noncommut. Geom. 12 (2018), 1425-1444. Zbl 1430.18010, MR 3896230, 10.4171/JNCG/311
Reference: [3] Dionne, J., Lanzilotta, M., Smith, D.: Skew group algebras of piecewise hereditary algebras are piecewise hereditary.J. Pure Appl. Algebra 213 (2009), 241-249. Zbl 1166.16005, MR 2467401, 10.1016/j.jpaa.2008.06.010
Reference: [4] Happel, D., Reiten, I.: Hereditary abelian categories with tilting object over arbitrary base fields.J. Algebra 256 (2002), 414-432. Zbl 1015.18007, MR 1939113, 10.1016/S0021-8693(02)00088-1
Reference: [5] Happel, D., Zacharia, D.: A homological characterization of piecewise hereditary algebras.Math. Z. 260 (2008), 177-185. Zbl 1193.16005, MR 2413349, 10.1007/s00209-007-0268-3
Reference: [6] Kasjan, S.: Auslander-Reiten sequences under base field extension.Proc. Am. Math. Soc. 128 (2000), 2885-2896. Zbl 0974.16012, MR 1670379, 10.1090/S0002-9939-00-05382-X
Reference: [7] Li, J.: Algebra extensions and derived-discrete algebras.Available at https://arxiv.org/abs/1904.07168 (2019), 8 pages.
Reference: [8] Li, L.: Finitistic dimensions and piecewise hereditary property of skew group algebras.Glasg. Math. J. 57 (2015), 509-517. Zbl 1336.16022, MR 3395330, 10.1017/S0017089514000445
Reference: [9] Lin, Y., Zhou, Z.: Tilted algebras and crossed products.Glasg. Math. J. 58 (2016), 559-571. Zbl 1372.16009, MR 3530486, 10.1017/S0017089515000336
Reference: [10] Năstăsescu, C., Bergh, M. Van den, Oystaeyen, F. Van: Separable functors applied to graded rings.J. Algebra 123 (1989), 397-413. Zbl 0673.16026, MR 1000494, 10.1016/0021-8693(89)90053-7
Reference: [11] Rafael, M. D.: Separable functors revisited.Commun. Algebra 18 (1990), 1445-1459. Zbl 0713.18002, MR 1059740, 10.1080/00927879008823975
Reference: [12] Rickard, J.: Morita theory for derived categories.J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. Zbl 0642.16034, MR 1002456, 10.1112/jlms/s2-39.3.436
Reference: [13] Zimmermann, A.: A Noether-Deuring theorem for derived categories.Glasg. Math. J. 54 (2012), 647-654. Zbl 1258.16014, MR 2965408, 10.1017/S0017089512000237
.

Files

Files Size Format View
CzechMathJ_71-2021-4_8.pdf 229.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo