Previous |  Up |  Next

Article

Title: Non-local damage modelling of quasi-brittle composites (English)
Author: Vala, Jiří
Author: Kozák, Vladislav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 6
Year: 2021
Pages: 815-836
Summary lang: English
.
Category: math
.
Summary: Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc.\ loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying the dynamical approach using the Kelvin viscoelastic model and cohesive interface properties. The existence and convergence results rely on the semilinear computational scheme coming from the method of discretization in time, using several types of Rothe sequences, coupled with the extended finite element method (XFEM) for practical calculations. Numerical examples refer to cementitious samples reinforced by short steel fibres, with increasing number of applications as constructive parts in civil engineering. (English)
Keyword: quasi-brittle composite
Keyword: steel fibre concrete, micro- and macro-fracture, non-local viscoelasticity
Keyword: cohesive interface
Keyword: partial differential equations of evolution
Keyword: method of discretization in time
Keyword: extended finite element method
MSC: 74E30
MSC: 74H15
MSC: 74R10
MSC: 74S05
MSC: 74S20
idZBL: Zbl 07442408
idMR: MR4342610
DOI: 10.21136/AM.2021.0281-20
.
Date available: 2021-11-18T15:26:16Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149265
.
Reference: [1] Altan, S. B.: Existence in nonlocal elasticity.Arch. Mech. 41 (1989), 25-36. Zbl 0725.73022, MR 1065652
Reference: [2] Babuška, I., Melenk, J. M.: The partition of unity method.Int. J. Numer. Methods Eng. 40 (1997), 727-758. Zbl 0949.65117, MR 1429534, 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
Reference: [3] Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing.Int. J. Numer. Methods Eng. 45 (1999), 601-620. Zbl 0943.74061, 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
Reference: [4] Castro, A. Bermúdez de: Continuum Thermomechanics.Progress in Mathematical Physics 43. Birkhäuser, Basel (2005). Zbl 1070.74001, MR 2145925, 10.1007/3-7643-7383-0
Reference: [5] Bhatia, G. S., Arora, G.: Radial basis function methods for solving partial differential equations: A review.Indian J. Sci. Technol. 9 (2016), Article ID 45, 18 pages. 10.17485/ijst/2016/v9i45/105079
Reference: [6] Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Fréres, P.: Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model.Composites B, Eng. 55 (2013), 352-361. 10.1016/j.compositesb.2012.12.013
Reference: [7] Bunkure, J. K.: Lebesgue-Bochner spaces and evolution triples.Int. J. Math. Appl. 7 (2019), 41-52.
Reference: [8] Cianchi, A., Maz'ya, V.: Sobolev inequalities in arbitrary domains.Adv. Math. 293 (2016), 644-696. Zbl 1346.46022, MR 4074620, 10.1016/j.aim.2016.02.012
Reference: [9] Clark, D. S.: Short proof of a discrete Gronwall inequality.Discrete Appl. Math. 16 (1987), 279-281. Zbl 0612.39004, MR 0878027, 10.1016/0166-218X(87)90064-3
Reference: [10] Maso, G. Dal, Lazzaroni, G.: Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem.Discrete Contin. Dyn. Syst. 31 (2011), 1219-1231. Zbl 1335.74051, MR 2836349, 10.3934/dcds.2011.31.1219
Reference: [11] Piero, G. Del, Owen, D. R.: Structured deformations of continua.Arch. Ration. Mech. Anal. 124 (1993), 99-155. Zbl 0795.73005, MR 1237908, 10.1007/BF00375133
Reference: [12] Dlouhý, L., Pouillon, S.: Application of the design code for steel-fibre-reinforced concrete into finite element software.Beton 116 (2020), 8-13.
Reference: [13] Drábek, P., Milota, J.: Methods of Nonlinear Analysis: Applications to Differential Equations.Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2013). Zbl 1264.35001, MR 3025694, 10.1007/978-3-0348-0387-8
Reference: [14] Eliáš, J., Vořechovský, M., Skoček, J., Bažant, Z. P.: Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data.Eng. Fract. Mech. 135 (2015), 1-16. 10.1016/j.engfracmech.2015.01.004
Reference: [15] Emmrich, E., Puhst, D.: Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics.Nonlinearity 28 (2015), 285-307. Zbl 1312.35163, MR 3297136, 10.1088/0951-7715/28/1/285
Reference: [16] Eringen, A. C.: Theory of Nonlocal Elasticity and Some Applications.Technical Report 62. Princeton University Press, Princeton (1984).
Reference: [17] Eringen, A. C.: Nonlocal Continuum Field Theories.Springer, New York (2002). Zbl 1023.74003, MR 1918950, 10.1007/b97697
Reference: [18] Evgrafov, A., Bellido, J. C.: From non-local Eringen's model to fractional elasticity.Math. Mech. Solids 24 (2019), 1935-1953. Zbl 1425.74093, MR 3954360, 10.1177/1081286518810745
Reference: [19] Fries, T.-P., Belytschko, T.: The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns.Int. J. Numer. Methods Eng. 68 (2006), 1358-1385. Zbl 1129.74045, 10.1002/nme.1761
Reference: [20] Gao, Z., Zhang, L., Yu, W.: A nonlocal continuum damage model for brittle fracture.Eng. Fract. Mech. 189 (2018), 481-500. 10.1016/j.engfracmech.2017.10.019
Reference: [21] Giry, C., Dufour, F., Mazars, J.: Stress-based nonlocal damage model.Int. J. Solids Struct. 48 (2011), 3431-3443. 10.1016/j.ijsolstr.2011.08.012
Reference: [22] Grija, S., Shanthini, D., Abinaya, S.: A review on fiber reinforced concrete.Int. J. Civil Eng. Technol. 7 (2016), 386-392.
Reference: [23] Hashiguchi, K.: Elastoplasticity Theory.Lecture Notes in Applied and Computational Mechanics 69. Springer, Berlin (2014). Zbl 1318.74001, MR 3235845, 10.1007/978-3-642-35849-4
Reference: [24] Havlásek, P., Grassl, P., Jirásek, M.: Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models.Eng. Fract. Mech. 157 (2016), 72-85. 10.1016/j.engfracmech.2016.02.029
Reference: [25] Hoekstra, A.: Design methodologies for steel-fibre-reinforced concrete and a new methodology for a real time quality control.Beton 116 (2020), 44-49.
Reference: [26] Horgan, C. O.: Eigenvalue estimates and the trace theorem.J. Math. Anal. Appl. 69 (1979), 231-242. Zbl 0412.35073, MR 0535293, 10.1016/0022-247X(79)90190-2
Reference: [27] Javili, A., Morasata, R., Oterkus, E., Oterkus, S.: Peridynamics review.Math. Mech. Solids 24 (2019), 3714-3739. Zbl 07273389, MR 4000179, 10.1177/1081286518803411
Reference: [28] Jirásek, M.: Damage and smeared crack models.Numerical Modeling of Concrete Cracking CISM Courses and Lectures 532. Springer, Wien (2011), 1-49. Zbl 1247.74055, 10.1007/978-3-7091-0897-0_1
Reference: [29] Kaliske, M., Dal, H., Fleischhauer, R., Jenkel, C., Netzker, C.: Characterization of fracture processes by continuum and discrete modelling.Comput. Mech. 50 (2012), 303-320. Zbl 1398.74347, MR 2967876, 10.1007/s00466-011-0578-5
Reference: [30] Kawde, P., Warudkar, A.: Steel fibre reinforced concrete: A review.Int. J. Eng. Sci. Res. Technol. 6 (2017), 130-133. 10.5281/zenodo.233321
Reference: [31] Khoei, A. R.: Extended Finite Element Method: Theory and Applications.Wiley Series in Computational Mechanics. John Wiley & Sons, New York (2015). Zbl 1315.74001, 10.1002/9781118869673
Reference: [32] Kozák, V., Chlup, Z.: Modelling of fibre-matrix interface of brittle matrix long fibre composite by application of cohesive zone method.Key Eng. Materials 465 (2011), 231-234. 10.4028/www.scientific.net/KEM.465.231
Reference: [33] Kozák, V., Chlup, Z., Padělek, P., Dlouhý, I.: Prediction of the traction separation law of ceramics using iterative finite element modelling.Solid State Phenomena 258 (2017), 186-189. 10.4028/www.scientific.net/SSP.258.186
Reference: [34] Lazar, M., Maugin, G. A., Aifantis, E. C.: On a theory of nonlocal elasticity of bi-Helmholtz type and some applications.Int. J. Solids Struct. 43 (2006), 1404-1421. Zbl 1120.74342, MR 2200992, 10.1016/j.ijsolstr.2005.04.027
Reference: [35] Lazzaroni, G.: Quasistatic crack growth in finite elasticity with Lipschitz data.Ann. Mat. Pura Appl. (4) 190 (2011), 165-194. Zbl 1215.35156, MR 2747470, 10.1007/s10231-010-0145-2
Reference: [36] Li, X., Chen, J.: An extended cohesive damage model for simulating arbitrary damage propagation in engineering materials.Comput. Methods Appl. Mech. Eng. 315 (2017), 744-759. Zbl 1439.74334, MR 3595276, 10.1016/j.cma.2016.11.029
Reference: [37] Li, X., Gao, W., Liu, W.: A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation.Int. J. Damage Mech. 28 (2019), 1299-1322. 10.1177/1056789518823876
Reference: [38] Macek, R. W., Silling, S. A.: Peridynamics via finite element analysis.Finite Elem. Anal. Des. 43 (2007), 1169-1178. MR 2393568, 10.1016/j.finel.2007.08.012
Reference: [39] Majdisova, Z., Skala, V.: Radial basis function approximations: Comparison and applications.Appl. Math. Modelling 51 (2017), 728-743. Zbl 07166287, MR 3694560, 10.1016/j.apm.2017.07.033
Reference: [40] Mielke, A., Roubíček, T.: Rate-Independent Systems: Theory and Applications.Applied Mathematical Sciences 193. Springer, New York (2015). Zbl 1339.35006, MR 3380972, 10.1007/978-1-4939-2706-7
Reference: [41] Moradi, M., Bagherieh, A. R., Esfahani, M. R.: Constitutive modeling of steel fiber-reinforced concrete.Int. J. Damage Mech. 29 (2020), 388-412. 10.1177/1056789519851159
Reference: [42] Morandotti, M.: Structured deformation of continua: Theory and applications.Mathematical Analysis of Continuum Mechanics and Industrial Applications II Springer, Singapore (2018), 125-136. 0.1007/978-981-10-6283-4_11
Reference: [43] Nakamura, N.: Extended Rayleigh damping model.Front. Built Environ. 2 (2016), Article ID 14, 13 pages. 10.3389/fbuil.2016.00014
Reference: [44] R. H. J. Peerlings, R. de Borst, W, A. M. Brekelmans, M. Geers: Gradient enhanced damage modelling of concrete fracture.Mech. Cohesive-frictional Mater. 3 (1998), 323-342. 10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
Reference: [45] Pijaudier-Cabot, G., Mazars, J.: Damage models for concrete. Section 6.13.Handbook of Materials Behavior Models. Volume II Academic Press, London (2001), 500-512 J. Lemaitre. 10.1016/B978-012443341-0/50056-9
Reference: [46] Pike, M. G., Oskay, C.: XFEM modeling of short microfiber reinforced composites with cohesive interfaces.Finite Elem. Anal. Des. 106 (2005), 16-31. 10.1016/j.finel.2015.07.007
Reference: [47] Povstenko, Yu. Z.: The nonlocal theory of elasticity and its application to the description of defects in solid bodies.J. Math. Sci. 97 (1999), 3840-3845. 10.1007/BF02364923
Reference: [48] Ray, P.: Statistical physics perspective of fracture in brittle and quasi-brittle materials.Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 377 (2019), Article ID 20170396, 13 pages. 10.1098/rsta.2017.0396
Reference: [49] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications 4. D. Reidel, Dordrecht (1982). Zbl 0505.65029, MR 0689712
Reference: [50] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005). Zbl 1087.35002, MR 2176645
Reference: [51] Roubíček, T.: Thermodynamics of rate-independent processes in viscous solids at small strains.SIAM J. Math. Anal. 42 (2010), 256-297. Zbl 1213.35279, MR 2596554, 10.1137/080729992
Reference: [52] Šilhavý, M.: The general form of the relaxation of a purely interfacial energy for structured deformations.Math. Mech. Complex Syst. 5 (2017), 191-215. Zbl 1447.49026, MR 3669123, 10.2140/memocs.2017.5.191
Reference: [53] Su, X. T., Yang, Z. J., Liu, G. H.: Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study.Int. J. Solids Struct. 47 (2010), 2336-2345. Zbl 1194.74313, 10.1016/j.ijsolstr.2010.04.031
Reference: [54] Sumi, Y.: Mathematical and Computational Analyses of Cracking Formation.Mathematics for Industry (Tokyo) 2. Springer, Tokyo (2014). Zbl 1395.74001, MR 3234571, 10.1007/978-4-431-54935-2
Reference: [55] Svenning, E., Larsson, F., Fagerström, M.: A two-scale modeling framework for strain localization in solids: XFEM procedures and computational aspects.Comput. Struct. 211 (2019), 43-54. 10.1016/j.compstruc.2018.08.003
Reference: [56] Swati, R. F., Wen, L. H., Elahi, H., Khan, A. A., Shad, S.: Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review.Microsyst. Technol. 25 (2019), 747-763. 10.1007/s00542-018-4021-0
Reference: [57] Vala, J.: Structure identification of metal fibre reinforced cementitious composites.Algoritmy: 20th Conference on Scientific Computing STU Bratislava, Bratislava (2016), 244-253.
Reference: [58] Vala, J., Kozák, V.: Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites.Theor. Appl. Fract. Mech. 107 (2020), Article ID 102486, 8 pages. 10.1016/j.tafmec.2020.102486
.

Files

Files Size Format View
AplMat_66-2021-6_2.pdf 3.440Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo