Full entry |
PDF
(1.4 MB)
Feedback

energy demand-supply; equilibrium points; stability; hopf bifurcation

References:

[1] Delice, I. I., Sipahi, R.: **Delay-independent stability test for systems with multiple time-delays**. IEEE Trans. Automat. Control 57 (2012), 4, 963-972. DOI

[2] Gu, K. Q., Naghnaeian, M.: **Stability crossing set for systems with three delays**. IEEE Trans. Automat. Control 56 (2011), 1, 11-26. DOI

[3] Gu, K. Q., Niculescu, S.-I., Chen, J.: **On stability crossing curves for general systems with two delays**. J. Math. Analysis Appl. 311 (2005), 231-253. DOI

[4] Koh, M. H., Sipahi, R.: **Effects of edge elimination on the delay margin of a class of LTI consensus dynamics**. IEEE Trans. Automat. Control 63 (2018), 12, 4397-4404. DOI

[5] Li, Z. G., Chen, J. X., Niculescu, S.-I., Cela, A.: **New insights in stability analysis of delayed Lotka-Volterra systems**. Franklin Inst. 355 (2018), 8683-8697. DOI 10.1016/j.jfranklin.2018.09.011

[6] Li, Y. M., Gu, K. Q., Zhou, J. P., Xu, S. Y.: **Estimating stable delay intervals with a discretized Lyapunov-Krasovskii functional formulation**. Automatica 50 (2014), 1691-1697. DOI

[7] Louisell, J.: **Imaginary axis eigenvalues of matrix delay equations with a certain alternating coefficient structure**. Systems Control Lett. 110 (2017), 49-54. DOI

[8] Luo, G. W., Zhang, X. X.: **Hopf Bifurcation of HR and FHN Neuron Systems with Time Delayed**. Master Degree Thesis of Lanzhou Jiaotong University, 2018.

[9] Naghnaeian, M., Gu, K. Q.: **Stability crossing set for systems with two scalar-delay channels**. Automatica 49 (2013), 2098-2106. DOI

[10] Olgac, N., Sipahi, R.: **An exact method for the stability analysis of time-delayed linear time-invariant(LTI) systems**. IEEE Trans. Automat. Control 47 (2002), 5, 793-797. DOI

[11] Qi, T., Zhu, J., Chen, J.: **Fundamental limits on uncertain delays: when is a delay system stabilizable by LTI controllers?**. IEEE Trans. Automat. Control 62(2017), 3, 1314-1328. DOI

[12] Qi, T., Zhu, J., Chen, J.: **On delay radii and bounds of MIMO systems**. Automatica 77 (2017), 214-218. DOI

[13] Ruan, S. G., Wei, J. J.: **On the zeros of transcendental functions with application to stability of delay differential equations with two delays**. Dynamics Continuous Discrete Impulsive Systems Series A: Math. Analysis 10 (2003), 863-874.

[14] Sipahi, R., Delice, I. I.: **Extraction of 3D stability switching hypersurfaces of a time delay system with multiple fixed delays**. Automatica 45 (2009), 1449-1454. DOI

[15] Sun, M., Jia, Q., Tian, L. X.: **A new four-dimensional energy resourses systems and its linear feedback control**. Chaos Solitons Fractals 39 (2009), 101-108. DOI

[16] Sun, M., Tian, L. X.: **An energy resources demand-supply system and its dynamical analysis**. Chaos Solitons Fractals 32 (2007), 168-180. DOI | Zbl 1133.91524

[17] Sun, M., Tian, L. X.: **The chaos control for a new four-dimensional energy demand-supply system**. J. Jiangsu University 5 (2007), 25-30.

[18] Wang, Z., Hu, H. Y.: **Stability switches of time-delayed dynamic systems with unknown parameters**. J. Sound Vibration 233 (2000), 215-233. DOI | MR 1762567 | Zbl 1237.93159

[19] Wang, X., Zhang, F. Q., Zhang, Y. J.: **Hopf bifurcation of three species system with time delays**. J. Systems Sci. Math. Sci. 30 (2010), 530-540. MR 2771905

[20] Wang, G. X., Zhou, Z. M., Zhu, S. M., Wang, S. S.: **Oridinary Differential Equations**. Higher Education Press, Beijing 2006.

[21] Wei, J. J., Wang, H. B., Jiang, W. H.: **Theory and Application of Delay Differential Equations**. Sciences Press, Beijing 2012.

[22] Yang, Y. H., Cao, G. H.: **A hyperchaotic system of five-dimensional energy supply and demand under new energy constraints**. J. Systems Engrg. 34 (2019), 159-169.

[23] Yang, K. Y., Zhang, L. L., Zhang, J.: **Stability analysis of a three-dimensional energy demand-supply system under delayed feedback control**. Kybernetika 51 (2015), 1084-1100. DOI