Previous |  Up |  Next

Article

Title: Some limit behavior for linear combinations of order statistics (English)
Author: Miao, Yu
Author: Ma, Mengyao
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 6
Year: 2021
Pages: 970-988
Summary lang: English
.
Category: math
.
Summary: In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained. (English)
Keyword: linear combinations of order statistics
Keyword: large deviation
Keyword: moderate deviation
Keyword: Gini mean difference statistics
MSC: 62G30
idZBL: Zbl 07478650
idMR: MR4376871
DOI: 10.14736/kyb-2021-6-0970
.
Date available: 2022-02-04T08:47:19Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149351
.
Reference: [1] Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B.: Strong laws for $L$- and $U$-statistics..Trans. Amer. Math. Soc. 348 (1996), 2845-2866. MR 1363941,
Reference: [2] Aleshkyavichene, A. K.: Large and moderate deviations for $L$-statistics..Lithuanian Math. J. 31 (1991), 145-156. MR 1161365,
Reference: [3] Bentkus, V., Zitikis, R.: Probabilities of large deviations for $L$-statistics..Lithuanian Math. J. 30 (1990), 215-222. MR 1082474,
Reference: [4] Bjerve, S.: Error bounds for linear combinations of order statistics..Ann. Statist. 5 (1977), 357-369. MR 0518648, 10.1214/aos/1176343800
Reference: [5] Boistard, H.: Large deviations for $L$-statistics..Statist. Decisions 25 (2007), 89-125. MR 2388858, 10.1524/stnd.2007.25.2.89
Reference: [6] Callaert, H., Vandemaele, M., Veraverbeke, N.: A Cramér type large deviation theorem for trimmed linear combinations of order statistics..Comm. Statist. A-Theory Methods 11 (1982), 2689-2698. MR 0682121,
Reference: [7] Chernoff, H., Gastwirth, J. L., Johns, M. V. J.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation..Ann. Math. Statist 38 (1967), 52-72. MR 0203874,
Reference: [8] H., David, A., Nagaraja, H. N.: Order Statistics. Third edition..Wiley-Interscience, John Wiley and Sons,], Hoboken, NJ, 2003. MR 1994955
Reference: [9] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications..Springer-Verlag, Berlin 2010. MR 2571413
Reference: [10] Grané, A., Tchirina, A. V.: Asymptotic properties of a goodness-of-fit test based on maximum correlations..Statistics 47 (2013), 202-215 MR 3023025,
Reference: [11] Gribkova, N.: Cramér type large deviations for trimmed $L$-statistics..Probab. Math. Statist. 37 (2017), 101-118. MR 3652203,
Reference: [12] Helmers, R.: The order of the normal approximation for linear combinations of order statistics with smooth weight functions..Ann. Probab. 5 (1977), 940-953. MR 0458716, 10.1214/aop/1176995662
Reference: [13] Helmers, R.: A Berry-Esseen theorem for linear combinations of order statistics..Ann. Probab. 9 (1981), 342-347. MR 0606999, 10.1214/aop/1176994478
Reference: [14] Helmers, R., Janssen, P., Serfling, R.: Glivenko-Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics..Probab. Theory Related Fields 79 (1988), 75-93. MR 0952995,
Reference: [15] Li, D. L., Rao, M. B., Tomkins, R. J.: The law of the iterated logarithm and central limit theorem for $L$-statistics..J. Multivariate Anal. 78 (2001), 191-217. MR 1859755,
Reference: [16] Jiang, H.: Moderate deviations for a class of $L$-statistics..Acta Appl. Math. 109 (2010), 1165-1178. MR 2596195, 10.1007/s10440-008-9375-3
Reference: [17] Jiang, H., Wang, W. G., Yu, L.: An exponential nonuniform convergence rate for a class of normalized $L$-statistics..J. Statist. Plann. Inference 171 (2016), 135-146. MR 3458074,
Reference: [18] Mason, D. M.: Some characterizations of strong laws for linear functions of order statistics..Ann. Probab. 10 (1982), 1051-1057. MR 0672306, 10.1214/aop/1176993727
Reference: [19] Mason, D. M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of trimmed $L$-statistics..J. Statist. Plann. Inference 25 (1990), 111-139. MR 1055726,
Reference: [20] D., Mason, M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of $L$-statistics..Ann. Probab. 20 (1992), 1779-1804. MR 1188042,
Reference: [21] Miao, Y., Chen, Y. X., Xu, S. F.: Asymptotic properties of the deviation between order statistics and $p$-quantile..Comm. Statist. Theory Methods 40 (2011), 8-14. MR 2747194, 10.1080/03610920903350523
Reference: [22] Plachky, D., Steinebach, J.: A theorem about probabilities of large deviations with an application to queuing theory..Period. Math. Hungar. 6 (1975), 343-345. MR 0410870,
Reference: [23] Sen, P. K.: An invariance principle for linear combinations of order statistics..Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 327-340. MR 0483171,
Reference: [24] Reiss, R. D.: Approximate Distributions of Order Statistics. With Applications to Nonparametric Statistics..Springer-Verlag, New York 1989. MR 0988164
Reference: [25] Stigler, S. M.: Linear functions of order statistics with smooth weight functions..Ann. Statist. 2 (1974), 676-693. MR 0373152,
Reference: [26] Stigler, S. M.: Correction to: "Linear functions of order statistics with smooth weight functions'' (Ann. Statist. 2 (1974), 676-693)..Ann. Statist. 7 (1979), 466. MR 0373152, 10.1214/aos/1176342756
Reference: [27] A., Tchirina, V.: Asymptotic properties of exponentiality tests based on $L$-statistics..Acta Appl. Math. 97 (2007), 297-309. MR 2329737,
Reference: [28] Zwet, W. R. van: A strong law for linear functions of order statistics..Ann. Probab. 8 (1980), 986-990. MR 0586781
Reference: [29] Vandemaele, M., Veraverbeke, N.: Cramér type large deviations for linear combinations of order statistics..Ann. Probab. 10 (1982), 423-434. MR 0647514,
Reference: [30] Wellner, J. A.: A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics..Ann. Statist. 5 (1977), 473-480. MR 0651528,
Reference: [31] Wellner, J. A.: Correction to: "A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics''..Ann. Statist. 6 (1978), 1394. MR 0651529,
Reference: [32] Xu, S. F., Ge, L., Miao, Y.: On the Bahadur representation of sample quantiles and order statistics for NA sequences..J. Korean Statist. Soc. 42 (2013), 1-7. MR 3255361,
Reference: [33] Xu, S. F., C., Mei, L., Miao, Y.: Limit theorems for ratios of order statistics from uniform distributions..J. Inequal. Appl. 2019, Paper No. 303. MR 4062049,
Reference: [34] Xu, S. F., Miao, Y.: Uniform moderate deviation of sample quantiles and order statistics..Bull. Korean Math. Soc. 51 (2014), 1399-1409. MR 3267238,
Reference: [35] Xu, S. F., Miao, Y.: Some limit theorems for ratios of order statistics from uniform random variables..J. Inequal. Appl. 2017, Paper No. 295. MR 3736591,
Reference: [36] Yao, S. X., Miao., Y., Nadarajah, S.: Exponential convergence for the $k$th order statistics..Filomat 29 (2015), 977-984. MR 3359285,
.

Files

Files Size Format View
Kybernetika_57-2021-6_6.pdf 429.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo