Previous |  Up |  Next

Article

Title: Convergence results of iterative algorithms for the sum of two monotone operators in reflexive Banach spaces (English)
Author: Tang, Yan
Author: Promkam, Ratthaprom
Author: Cholamjiak, Prasit
Author: Sunthrayuth, Pongsakorn
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 2
Year: 2022
Pages: 129-152
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to propose two modified forward-backward splitting algorithms for zeros of the sum of a maximal monotone operator and a Bregman inverse strongly monotone operator in reflexive Banach spaces. We prove weak and strong convergence theorems of the generated sequences by the proposed methods under some suitable conditions. We apply our results to study the variational inequality problem and the equilibrium problem. Finally, a numerical example is given to illustrate the proposed methods. The results presented in this paper improve and generalize many known results in recent literature. (English)
Keyword: maximal operator
Keyword: Bregman distance
Keyword: reflexive Banach space
Keyword: weak convergence
Keyword: strong convergence
MSC: 47H05
MSC: 47H09
MSC: 47H10
MSC: 47J05
MSC: 47J25
idZBL: Zbl 07511498
idMR: MR4396681
DOI: 10.21136/AM.2021.0108-20
.
Date available: 2022-03-25T08:21:01Z
Last updated: 2022-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/149563
.
Reference: [1] Agarwal, R. P., O'Regan, D., Sahu, D. R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications.Topological Fixed Point Theory and Its Applications 6. Springer, New York (2009). Zbl 1176.47037, MR 2508013, 10.1007/978-0-387-75818-3
Reference: [2] Alber, Y. I.: Generalized projection operators in Banach spaces: Properties and applications.Funct. Differ. Equ. 1 (1993), 1-21. Zbl 0882.47046, MR 1297965
Reference: [3] Alber, Y. I.: Metric and generalized projection operators in Banach spaces: Properties and applications.Theory and Applications of Nonlinear Operator of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 15-50. Zbl 0883.47083, MR 1386667
Reference: [4] Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces.Springer Monographs in Mathematics. Springer, Dordrecht (2012). Zbl 1244.49001, MR 3025420, 10.1007/978-94-007-2247-7
Reference: [5] Bauschke, H. H., Borwein, J. M., Combettes, P. L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces.Commun. Contemp. Math. 3 (2001), 615-647. Zbl 1032.49025, MR 1869107, 10.1142/S0219199701000524
Reference: [6] Bauschke, H. H., Wang, X., Yao, L.: General resolvents for monotone operators: Characterization and extension.Biomedical Mathematics: Promising Directions in Imagine, Therapy Planning and Inverse Problem (Huangguoshu 2008) Medical Physics Publishing, Madison (2010), 57-74 Y. Censor, M. Jiang, G. Wang.
Reference: [7] Beck, A.: First-Order Methods in Optimization.MOS-SIAM Series on Optimization 25. SIAM, Philadelphia (2017). Zbl 1384.65033, MR 3719240, 10.1137/1.9781611974997
Reference: [8] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods.Athena Scientific, Belmont (1997). Zbl 0743.65107, MR 3587745
Reference: [9] Bonnans, J. F., Shapiro, A.: Perturbation Analysis of Optimization Problems.Springer Series in Operations Research. Springer, New York (2000). Zbl 0966.49001, MR 1756264, 10.1007/978-1-4612-1394-9
Reference: [10] Borwein, J. M., Reich, S., Sabach, S.: A characterization of Bregman firmly nonexpansive operators using a new monotonicity concept.J. Nonlinear Convex Anal. 12 (2011), 161-184. Zbl 1221.26019, MR 2816416
Reference: [11] Bregman, L. M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming.U.S.S.R. Comput. Math. Math. Phys. 7 (1967), 200-217 translation from Zh. Vychisl. Mat. Mat. Fiz. 7 1967 620-631. Zbl 0186.23807, MR 0215617, 10.1016/0041-5553(67)90040-7
Reference: [12] Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces.Abstr. Appl. Anal. 2006 (2006), Article ID 84919, 39 pages. Zbl 1130.47046, MR 2211675, 10.1155/AAA/2006/84919
Reference: [13] Chang, S.-S., Wen, C.-F., Yao, J.-C.: Generalized viscosity implicit rules for solving quasi-inclusion problems of accretive operators in Banach spaces.Optimization 66 (2017), 1105-1117. Zbl 06774306, MR 3656611, 10.1080/02331934.2017.1325888
Reference: [14] Chang, S.-S., Wen, C.-F., Yao, J.-C.: Common zero point for a finite family of inclusion problems of accretive mappings in Banach spaces.Optimization 67 (2018), 183-1196. Zbl 1402.90119, MR 3820582, 10.1080/02331934.2018.1470176
Reference: [15] Chang, S.-S., Wen, C.-F., Yao, J.-C.: A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 729-747. Zbl 07086844, MR 3942363, 10.1007/s13398-018-0511-2
Reference: [16] Chang, S.-S., Wen, C.-F., Yao, J.-C.: Zero point problem of accretive operators in Banach spaces.Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 105-118. Zbl 07009736, MR 3894618, 10.1007/s40840-017-0470-3
Reference: [17] Chen, G. H.-G., Rockafellar, R. T.: Convergence rates in forward-backward splitting.SIAM J. Optim. 7 (1997), 421-444. Zbl 0876.49009, MR 1443627, 10.1137/S1052623495290179
Reference: [18] Cholamjiak, P., Pholasa, N., Suantai, S., Sunthrayuth, P.: The generalized viscosity explicit rules for solving variational inclusion problems in Banach spaces.(to appear) in Optimization. MR 4343296, 10.1080/02331934.2020.1789131
Reference: [19] Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting.Multiscale Model. Simul. 4 (2005), 1168-1200. Zbl 1179.94031, MR 2203849, 10.1137/050626090
Reference: [20] Dunn, J. C.: Convexity, monotonicity, and gradient processes in Hilbert space.J. Math. Anal. Appl. 53 (1976), 145-158. Zbl 0321.49025, MR 0388176, 10.1016/0022-247X(76)90152-9
Reference: [21] Güler, O.: On the convergence of the proximal point algorithm for convex minimization.SIAM J. Control Optim. 29 (1991), 403-419. Zbl 0737.90047, MR 1092735, 10.1137/0329022
Reference: [22] He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets.Abstr. Appl. Anal. 2013 (2013), Article ID 942315, 8 pages. Zbl 1273.47099, MR 3055865, 10.1155/2013/942315
Reference: [23] Iyer, R., Bilmes, J. A.: Submodular-Bregman and the Lovász-Bregman divergences with applications.Advances in Neural Information Processing Systems 25 (NIPS 2012) MIT Press, Cambridge (2012), 9 pages.
Reference: [24] Kimura, Y., Nakajo, K.: Strong convergence for a modified forward-backward splitting method in Banach spaces.J. Nonlinear Var. Anal. 3 (2019), 5-18. Zbl 07133169, MR 4055639, 10.23952/jnva.3.2019.1.02
Reference: [25] Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators.SIAM J. Numer. Anal. 16 (1979), 964-979. Zbl 0426.65050, MR 0551319, 10.1137/0716071
Reference: [26] López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces.Abstr. Appl. Anal. 2012 (2012), Article ID 109236, pages 25 pages. Zbl 1252.47043, MR 2955015, 10.1155/2012/109236
Reference: [27] Maingé, P. E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469-479. Zbl 1111.47058, MR 2273538, 10.1016/j.jmaa.2005.12.066
Reference: [28] Martín-Márquez, V., Reich, S., Sabach, S.: Iterative Methods for approximating fixed points of Bregman nonexpansive operators.Discrete Contin. Dyn. Syst., Ser. S 6 (2013), 1043-1063. Zbl 1266.26023, MR 3009055, 10.3934/dcdss.2013.6.1043
Reference: [29] Naraghirad, E.: Halpern's iteration for Bregman relatively nonexpansive mappings in Banach spaces.Numer. Funct. Anal. Optim. 34 (2013), 1129-1155. Zbl 1301.47088, MR 3175612, 10.1080/01630563.2013.767269
Reference: [30] Naraghirad, E., Yao, J.-C.: Bregman weak relatively nonexpansive mappings in Banach space.Fixed Point Theory Appl. 2013 (2013), Article ID 141, 43 pages. Zbl 1423.47046, MR 3072832, 10.1186/1687-1812-2013-141
Reference: [31] Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids.IEEE Trans. Inf. Theory 57 (2011), 5455-5466. Zbl 1365.94159, MR 2849367, 10.1109/TIT.2011.2159046
Reference: [32] Nielsen, F., Nock, R.: Generalizing skew Jensen divergences and Bregman divergences with comparative convexity.IEEE Signal Process. Lett. 24 (2017), 1123-1127. 10.1109/LSP.2017.2712195
Reference: [33] Ogbuisi, F. U., Izuchukwu, C.: Approximating a zero of sum of two monotone operators which solves a fixed point problem in reflexive Banach spaces.Numer. Funct. Anal. Optim. 41 (2020), 322-343. Zbl 07150136, MR 4041318, 10.1080/01630563.2019.1628050
Reference: [34] Pathak, H. K.: An Introduction to Nonlinear Analysis and Fixed Point Theory.Springer, Singapore (2018). Zbl 1447.47002, MR 3728339, 10.1007/978-981-10-8866-7
Reference: [35] Reich, S.: A weak convergence theorem for the alternating method with Bregman distances.Theory and Applications of Nonlinear Operators of Accretive and Monotone Type Lecture Notes in Pure and Applied Mathematics 178. Marcel Dekker, New York (1996), 313-318. Zbl 0943.47040, MR 1386686
Reference: [36] Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces.Numer. Funct. Anal. Optim. 31 (2010), 22-44. Zbl 1200.47085, MR 2677243, 10.1080/01630560903499852
Reference: [37] Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces.Nonlinear Anal., Theory Methods Appl., Ser. A 73 (2010), 122-135. Zbl 1226.47089, MR 2645837, 10.1016/j.na.2010.03.005
Reference: [38] Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces.Fixed-Point Algorithms for Inverse Problems in Science and Engineering Springer Optimization and Its Applications 49. Springer, New York (2011), 301-316. Zbl 1245.47015, MR 2858843, 10.1007/978-1-4419-9569-8_15
Reference: [39] Rockafellar, R. T.: Convex Analysis.Princeton University Press, Princeton (1970). Zbl 0193.18401, MR 0274683, 10.1515/9781400873173
Reference: [40] Rockafellar, R. T.: On the maximal monotonicity of subdifferential mappings.Pac. J. Math. 33 (1970), 209-216. Zbl 0199.47101, MR 0262827, 10.2140/pjm.1970.33.209
Reference: [41] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056
Reference: [42] Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces.SIAM J. Optim. 21 (2011), 1289-1308. Zbl 1237.47073, MR 2854584, 10.1137/100799873
Reference: [43] Shehu, Y.: Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces.Result. Math. 74 (2019), Article ID 138, 24 pages. Zbl 07099993, MR 3978049, 10.1007/s00025-019-1061-4
Reference: [44] Shehu, Y., Cai, G.: Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. Zbl 06836237, MR 3742991, 10.1007/s13398-016-0366-3
Reference: [45] Suantai, S., Cholamjiak, P., Sunthrayuth, P.: Iterative methods with perturbations for the sum of two accretive operators in $q$-uniformly smooth Banach spaces.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113 (2019), 203-223. Zbl 1450.47026, MR 3902940, 10.1007/s13398-017-0465-9
Reference: [46] Sunthrayuth, P., Cholamjiak, P.: Iterative methods for solving quasi-variational inclusion and fixed point problem in $q$-uniformly smooth Banach spaces.Numer. Algorithms 78 (2018), 1019-1044. Zbl 06916361, MR 3827320, 10.1007/s11075-017-0411-0
Reference: [47] Takahashi, W., Wong, N.-C., Yao, J.-C.: Two generalized strong convergence theorems of Halpern's type in Hilbert spaces and applications.Taiwanese J. Math. 16 (2012), 1151-1172. Zbl 06062770, MR 2917261, 10.11650/twjm/1500406684
Reference: [48] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings.SIAM J. Control Optim. 38 (2000), 431-446. Zbl 0997.90062, MR 1741147, 10.1137/S0363012998338806
Reference: [49] Wang, Y., Wang, F.: Strong convergence of the forward-backward splitting method with multiple parameters in Hilbert spaces.Optimization 67 (2018), 493-505. Zbl 06865949, MR 3760003, 10.1080/02331934.2017.1411485
Reference: [50] Xu, H.-K.: Inequalities in Banach spaces with applications.Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. Zbl 0757.46033, MR 1111623, 10.1016/0362-546X(91)90200-K
Reference: [51] Zălinescu, C.: Convex Analysis in General Vector Spaces.World Scientific, Singapore (2002). Zbl 1023.46003, MR 1921556, 10.1142/5021
Reference: [52] Zegeye, H., Shahzad, N.: An algorithm for finding a common point of the solution set of a variational inequality and the fixed point set of a Bregman relatively nonexpansive mapping.Appl. Math. Comput. 248 (2014), 225-234. Zbl 1338.47115, MR 3276677, 10.1016/j.amc.2014.08.071
Reference: [53] Zhu, J.-H., Chang, S.-S.: Halpern-Mann's iterations for Bregman strongly nonexpansive mappings in reflexive Banach spaces with applications.J. Inequal. Appl. 2013 (2013), Article ID 146, 14 pages. Zbl 1279.47091, MR 3055828, 10.1186/1029-242X-2013-146
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo