Title:
|
$L^{p}$-improving properties of certain singular measures on the Heisenberg group (English) |
Author:
|
Rocha, Pablo |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
147 |
Issue:
|
1 |
Year:
|
2022 |
Pages:
|
131-140 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mu _A$ be the singular measure on the Heisenberg group $\mathbb {H}^{n}$ supported on the graph of the quadratic function $\varphi (y) = y^{t}Ay$, where $A$ is a $2n \times 2n$ real symmetric matrix. If $\det (2A \pm J) \neq 0$, we prove that the operator of convolution by $\mu _A$ on the right is bounded from $L^{\frac {(2n+2)}{(2n+1)}}(\mathbb {H}^{n})$ to $L^{2n+2}(\mathbb {H}^{n})$. We also study the type set of the measures ${\rm d}\nu _{\gamma }(y,s) = \eta (y) |y|^{-\gamma } {\rm d}\mu _{A}(y,s)$, for $0 \leq \gamma < 2n$, where $\eta $ is a cut-off function around the origin on $\mathbb {R}^{2n}$. Moreover, for $\gamma =0$ we characterize the type set of $\nu _{0}$. (English) |
Keyword:
|
Heisenberg group |
Keyword:
|
singular Borel measure |
Keyword:
|
$L^{p}$-improving property |
MSC:
|
42A38 |
MSC:
|
42B10 |
MSC:
|
43A80 |
idZBL:
|
Zbl 07547245 |
idMR:
|
MR4387472 |
DOI:
|
10.21136/MB.2021.0014-20 |
. |
Date available:
|
2022-04-17T18:11:13Z |
Last updated:
|
2022-09-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149590 |
. |
Reference:
|
[1] Carmo, M. P. do: Riemannian Geometry.Mathematics: Theory & Applications. Birkhäuser, Boston (1992). Zbl 0752.53001, MR 1138207, 10.1007/978-1-4757-2201-7 |
Reference:
|
[2] Gel'fand, I. M., Shilov, G. E.: Generalized Functions. Vol. I. Properties and Operations.Academic Press, New York (1964). Zbl 0115.33101, MR 0166596, 10.1090/chel/377 |
Reference:
|
[3] Godoy, T., Rocha, P.: $L^p-L^q$ estimates for some convolution operators with singular measures on the Heisenberg group.Colloq. Math. 132 (2013), 101-111. Zbl 1277.43013, MR 3106091, 10.4064/cm132-1-8 |
Reference:
|
[4] Godoy, T., Rocha, P.: Convolution operators with singular measures of fractional type on the Heisenberg group.Stud. Math. 245 (2019), 213-228. Zbl 1412.43009, MR 3865682, 10.4064/sm8781-12-2017 |
Reference:
|
[5] Littman, W.: $L^p-L^q$ estimates for singular integral operators arising from hyperbolic equations.Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. American Mathematical Society, Providence (1973), 479-481. Zbl 0263.44006, MR 0358443, 10.1090/pspum/023/9948 |
Reference:
|
[6] Oberlin, D. M.: Convolution estimates for some measures on curves.Proc. Am. Math. Soc. 99 (1987), 56-60. Zbl 0613.43002, MR 866429, 10.1090/S0002-9939-1987-0866429-6 |
Reference:
|
[7] Pan, Y.: A remark on convolution with measures supported on curves.Can. Math. Bull. 36 (1993), 245-250. Zbl 0820.43002, MR 1222541, 10.4153/CMB-1993-035-2 |
Reference:
|
[8] Ricci, F.: $L^p-L^q$ boundedness of convolution operators defined by singular measures in $\mathbb R^n$.Boll. Unione Mat. Ital., VII. Ser., A 11 (1997), 237-252 Italian. Zbl 0946.42006, MR 1477777 |
Reference:
|
[9] Ricci, F., Stein, E. M.: Harmonic analysis on nilpotent groups and singular integrals. III. Fractional integration along manifolds.J. Funct. Anal. 86 (1989), 360-389. Zbl 0684.22006, MR 1021141, 10.1016/0022-1236(89)90057-8 |
Reference:
|
[10] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group.Stud. Math. 132 (1999), 179-201. Zbl 0960.43009, MR 1669682, 10.4064/sm-132-2-179-201 |
Reference:
|
[11] Secco, S.: $L^p$-improving properties of measures supported on curves on the Heisenberg group. II.Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8) 5 (2002), 527-543. Zbl 1113.42012, MR 1911204 |
Reference:
|
[12] Stein, E. M., Shakarchi, R.: Complex Analysis.Princeton Lectures in Analysis 2. Princeton University Press, Princeton (2003). Zbl 1020.30001, MR 1976398 |
Reference:
|
[13] Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces.Princeton Mathematical Series. Princeton University Press, Princeton (1971). Zbl 0232.42007, MR 0304972, 10.1515/9781400883899 |
. |