Previous |  Up |  Next

Article

Keywords:
fractional $p$-Laplacian; impulsive effect; classical solution; variational method
Summary:
This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a $p$-Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.
References:
[1] Afrouzi, G. A., Hadjian, A., Bisci, G. Molica: Some remarks for one-dimensional mean curvature problems through a local minimization principle. Adv. Nonlinear Anal. 2 (2013), 427-441. DOI 10.1515/anona-2013-0021 | MR 3199740 | Zbl 1283.34014
[2] Agarwal, R. P., Franco, D., O'Regan, D.: Singular boundary value problems for first and second order impulsive differential equations. Aequationes Math. 69 (2005), 83-96. DOI 10.1007/s00010-004-2735-9 | MR 2126188 | Zbl 1073.34025
[3] Agarwal, R. P., Hristova, S., O'Regan, D.: Non-Instantaneous Impulses in Differential Equations. Springer, Cham (2017). DOI 10.1007/978-3-319-66384-5 | MR 3726876 | Zbl 1426.34001
[4] Baek, H.: Extinction and permanence of a three-species Lotka-Volterra system with impulsive control strategies. Discrete Dyn. Nat. Soc. 2008 (2008), Article ID 752403, 18 pages. DOI 10.1155/2008/752403 | MR 2452458 | Zbl 1167.34350
[5] Bai, C.: Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative. J. Math. Anal. Appl. 384 (2011), 211-231. DOI 10.1016/j.jmaa.2011.05.082 | MR 2825176 | Zbl 1234.34005
[6] Bai, C.: Solvability of multi-point boundary value problem of nonlinear impulsive fractional differential equation at resonance. Electron. J. Qual. Theory Differ. Equ. 2011 (2011), Article ID 89, 19 pages. DOI 10.14232/ejqtde.2011.1.89 | MR 2854028 | Zbl 1340.34007
[7] Bhairat, S. P., Dhaigude, D.-B.: Existence of solutions of generalized fractional differential equation with nonlocal initial condition. Math. Bohem. 144 (2019), 203-220. DOI 10.21136/MB.2018.0135-17 | MR 3974188 | Zbl 07088846
[8] Bonanno, G., Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the $p$-Laplacian. Arch. Math. 80 (2003), 424-429. DOI 10.1007/s00013-003-0479-8 | MR 1982841 | Zbl 1161.35382
[9] Bonanno, G., D'Aguì, G.: Multiplicity results for a perturbed elliptic Neumann problem. Abstr. Appl. Anal. 2010 (2010), Article ID 564363, 10 pages. DOI 10.1155/2010/564363 | MR 2674389 | Zbl 1207.35118
[10] Bonanno, G., Bisci, G. Molica: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009 (2009), Article ID 670675, 20 pages. DOI 10.1155/2009/670675 | MR 2487254 | Zbl 1177.34038
[11] Bonanno, G., Rodríguez-López, R., Tersian, S.: Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17 (2014), 717-744. DOI 10.2478/s13540-014-0196-y | MR 3260304 | Zbl 1308.34010
[12] Chen, L., Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations. J. Math. Anal. Appl. 318 (2006), 726-741. DOI 10.1016/j.jmaa.2005.08.012 | MR 2215181 | Zbl 1102.34052
[13] Chen, J., Tang, X. H.: Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012 (2012), Article ID 648635, 21 pages. DOI 10.1155/2012/648635 | MR 2872321 | Zbl 1235.34011
[14] Chu, J., Nieto, J. J.: Impulsive periodic solutions of first-order singular differential equations. Bull. Lond. Math. Soc. 40 (2008), 143-150. DOI 10.1112/blms/bdm110 | MR 2409187 | Zbl 1144.34016
[15] Diethelm, K.: The Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics 2004. Springer, Berlin (2010). DOI 10.1007/978-3-642-14574-2 | MR 2680847 | Zbl 1215.34001
[16] Faraci, F.: Multiple solutions for two nonlinear problems involving the $p$-Laplacian. Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e1017--e1029. DOI 10.1016/j.na.2005.02.066 | Zbl 1224.35152
[17] Galewski, M., Bisci, G. Molica: Existence results for one-dimensional fractional equations. Math. Methods Appl. Sci. 39 (2016), 1480-1492. DOI 10.1002/mma.3582 | MR 3483509 | Zbl 1381.34012
[18] Gao, D., Li, J.: Infinitely many solutions for impulsive fractional differential equations through variational methods. Quaest. Math. 43 (2020), 1285-1301. DOI 10.2989/16073606.2019.1609619 | MR 4168249 | Zbl 07307597
[19] Gao, Z., Yang, L., Liu, G.: Existence and uniqueness of solutions to impulsive fractional integro-differential equations with nonlocal conditions. Appl. Math., Irvine 4 (2013), 859-863. DOI 10.4236/am.2013.46118
[20] Graef, J. R., Kong, L., Kong, Q.: Multiple solutions of systems of fractional boundary value problems. Appl. Anal. 94 (2015), 1288-1304. DOI 10.1080/00036811.2014.930822 | MR 3325346 | Zbl 1323.34007
[21] Guo, L., Zhang, X.: Existence of positive solutions for the singular fractional differential equations. J. Appl. Math. Comput. 44 (2014), 215-228. DOI 10.1007/s12190-013-0689-6 | MR 3147738 | Zbl 1300.34017
[22] Heidarkhani, S.: Multiple solutions for a nonlinear perturbed fractional boundary value problem. Dyn. Syst. Appl. 23 (2014), 317-331. MR 3241882 | Zbl 1321.34012
[23] Heidarkhani, S., Afrouzi, G. A., Ferrara, M., Caristi, G., Moradi, S.: Existence results for impulsive damped vibration systems. Bull. Malays. Math. Sci. Soc. (2) 41 (2018), 1409-1428. DOI 10.1007/s40840-016-0400-9 | MR 3818425 | Zbl 1401.34031
[24] Heidarkhani, S., Afrouzi, G. A., Moradi, S., Caristi, G., Ge, B.: Existence of one weak solution for $p(x)$-biharmonic equations with Navier boundary conditions. Z. Angew. Math. Phys. 67 (2016), Article ID 73, 13 pages. DOI 10.1007/s00033-016-0668-5 | MR 3508996 | Zbl 1353.35153
[25] Heidarkhani, S., Zhao, Y., Caristi, G., Afrouzi, G. A., Moradi, S.: Infinitely many solutions for perturbed impulsive fractional differential systems. Appl. Anal. 96 (2017), 1401-1424. DOI 10.1080/00036811.2016.1192147 | MR 3633869 | Zbl 1367.34007
[26] (ed.), R. Hilfer: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). DOI 10.1142/3779 | MR 1890104 | Zbl 0998.26002
[27] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62 (2011), 1181-1199. DOI 10.1016/j.camwa.2011.03.086 | MR 2824707 | Zbl 1235.34017
[28] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). DOI 10.1016/s0304-0208(06)x8001-5 | MR 2218073 | Zbl 1092.45003
[29] Kong, L.: Existence of solutions to boundary value problems arising from the fractional advection dispersion equation. Electron. J. Differ. Equ. 2013 (2013), Article ID 106, 15 pages. MR 3065059 | Zbl 1291.34016
[30] Li, W., Zhen, H.: The applications of sums of ranges of accretive operators to nonlinear equations involving the $p$-Laplacian operator. Nonlinear Anal., Theory Methods Appl. 24 (1995), 185-193. DOI 10.1016/0362-546X(94)E0051-H | MR 1312589 | Zbl 0828.35041
[31] Nieto, J. J., O'Regan, D.: Variational approach to impulsive differential equations. Nonlinear Anal., Real World Appl. 10 (2009), 680-690. DOI 10.1016/j.nonrwa.2007.10.022 | MR 2474254 | Zbl 1167.34318
[32] Nieto, J. J., Uzal, J. M.: Nonlinear second-order impulsive differential problems with dependence on the derivative via variational structure. J. Fixed Point Theory Appl. 22 (2020), Article ID 19, 13 pages. DOI 10.1007/s11784-019-0754-3 | MR 4050175 | Zbl 1442.34057
[33] Oldham, K. B., Spanier, J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering 111. Academic Press, New York (1974). DOI 10.1016/S0076-5392(09)60219-8 | MR 0361633 | Zbl 0292.26011
[34] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Regional Conference Series in Mathematics 65. American Mathematical Society, Providence (1986). DOI 10.1090/cbms/065 | MR 0845785 | Zbl 0609.58002
[35] Ricceri, B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113 (2000), 401-410. DOI 10.1016/S0377-0427(99)00269-1 | MR 1735837 | Zbl 0946.49001
[36] Tian, Y., Ge, W.: Applications of variational methods to boundary-value problem for impulsive differential equations. Proc. Edinb. Math. Soc., II. Ser. 51 (2008), 509-527. DOI 10.1017/S0013091506001532 | MR 2465922 | Zbl 1163.34015
[37] Wang, G., Ahmad, B., Zhang, L., Nieto, J. J.: Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 401-403. DOI 10.1016/j.cnsns.2013.04.003 | MR 3111618 | Zbl 07172418
[38] Wang, Y., Liu, Y., Cui, Y.: Infinitely many solutions for impulsive fractional boundary value problem with $p$-Laplacian. Bound. Value Probl. 2018 (2018), Article ID 94, 16 pages. DOI 10.1186/s13661-018-1012-0 | MR 3814794
[39] Wei, L., Agarwal, R. P.: Existence of solutions to nonlinear Neumann boundary value problems with generalized $p$-Laplacian operator. Comput. Math. Appl. 56 (2008), 530-541. DOI 10.1016/j.camwa.2008.01.013 | MR 2442671 | Zbl 1155.35360
[40] Zhao, Y., Tang, L.: Multiplicity results for impulsive fractional differential equations with $p$-Laplacian via variational methods. Bound. Value Probl. 2017 (2017), Article ID 123, 15 pages. DOI 10.1186/s13661-017-0855-0 | MR 3690093 | Zbl 06767364
[41] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Hackensack (2014). DOI 10.1142/9069 | MR 3287248 | Zbl 1336.34001
Partner of
EuDML logo