Previous |  Up |  Next

Article

Title: Oscillatory behavior of higher order neutral differential equation with multiple functional delays under derivative operator (English)
Author: Rath, R.N.
Author: Panda, K.C.
Author: Rath, S.K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 2
Year: 2022
Pages: 65-84
Summary lang: English
.
Category: math
.
Summary: In this article, we obtain sufficient conditions so that every solution of neutral delay differential equation \[ \big (y(t)- \sum _{i=1}^k p_i(t) y(r_i(t))\big )^{(n)}+ v(t)G( y(g(t)))-u(t)H(y(h(t))) = f(t) \] oscillates or tends to zero as $t\rightarrow \infty $, where, $n \ge 1$ is any positive integer, $p_i$, $r_i\in C^{(n)}([0,\infty ),\mathbb{R})$  and $p_i$ are bounded for each $i=1,2,\dots ,k$. Further, $f\in C([0, \infty ), \mathbb{R})$, $g$, $h$, $v$, $u \in C([0, \infty ), [0, \infty ))$, $G$ and $H \in C(\mathbb{R},\mathbb{R})$. The functional delays $r_i(t)\le t$, $g(t)\le t$ and $h(t)\le t$ and all of them approach $\infty $ as $t\rightarrow \infty $. The results hold when $u\equiv 0$ and $f(t)\equiv 0$. This article extends, generalizes and improves some recent results, and further answers some unanswered questions from the literature. (English)
Keyword: oscillation
Keyword: non-oscillation
Keyword: neutral equation
Keyword: asymptotic behaviour
MSC: 34C10
MSC: 34C15
MSC: 34K40
idZBL: Zbl 07547202
idMR: MR4448484
DOI: 10.5817/AM2022-2-65
.
Date available: 2022-05-16T10:27:15Z
Last updated: 2022-08-11
Stable URL: http://hdl.handle.net/10338.dmlcz/150421
.
Reference: [1] Dix, J.G., Misra, N., Padhy, L.N., Rath, R.N.: On oscillation and asymptotic behaviour of a neutral differential equations of first order with oscillating coefficients.Electron. J. Qual. Theory Differ. Equ. 19 (2008), 1–10. MR 2407546, 10.14232/ejqtde.2008.1.19
Reference: [2] Gyori, I., Ladas, G.: Oscillation Theory of Delay-Differential Equations with Applications.Clarendon Press, Oxford, 1991. MR 1168471
Reference: [3] Hilderbrandt, T.H.: Introduction to the Theory of Integration.Academic Press, New York, 1963. MR 0154957
Reference: [4] Karpuz, B., Rath, R.N., Padhy, L.N.: On oscillation and asymptotic behaviour of a higher order neutral differential equation with positive and negative coefficients.Electron. J. Differential Equations 2008 (113) (2008), 1–15, MR2430910. MR 2430910
Reference: [5] Ladde, G.S., Lakshmikantham, V., Zhang, B.G.: Oscillation Theory of Differential Equations with Deviating Arguments.Marcel Dekker Inc., New York, 1987. Zbl 0832.34071, MR 1017244
Reference: [6] Parhi, N., Rath, R.N.: On oscillation criteria for a forced neutral differential equation.Bull. Inst. Math. Acad. Sinica 28 (2000), 59–70. MR 1750329
Reference: [7] Parhi, N., Rath, R.N.: On oscillation and asymptotic behaviour of solutions of forced first order neutral differential equations.Proceedings of Indian Acad. Sci. Math. Sci., vol. 111, 2001, pp. 337–350. Zbl 0995.34058, MR 1851095, 10.1007/BF02829600
Reference: [8] Parhi, N., Rath, R.N.: Oscillation criteria for forced first order neutral differential equations with variable coefficients.J. Math. Anal. Appl. 256 (2001), 525–541. Zbl 0982.34057, MR 1821755, 10.1006/jmaa.2000.7315
Reference: [9] Parhi, N., Rath, R.N.: On oscillation of solutions of forced non linear neutral differential equations of higher order.Czechoslovak Math. J. 53 (2003), 805–825, MR2018832(2005g:34163). MR 2018832, 10.1007/s10587-004-0805-8
Reference: [10] Parhi, N., Rath, R.N.: On oscillation of solutions of forced nonlinear neutral differential equations of higher order II.Ann. Polon. Math. 81 (20033), 101–110. Zbl 1037.34058, MR 1976190, 10.4064/ap81-2-1
Reference: [11] Parhi, N., Rath, R.N.: Oscillation of solutions of a class of first order neutral differential equations.J. Indian Math. Soc. 71 (2004), 175–188. MR 2290627
Reference: [12] Royden, H.L.: Real Analysis.3rd ed., MacMilan Publ. Co., New York, 1988. Zbl 0704.26006, MR 1013117
Reference: [13] Sahiner, Y., Zafer, A.: Bounded oscillation of non-linear neutral differential equations of arbitrary order.Czechoslovak Math. J. 51 (2001), 185–195. MR 1814644, 10.1023/A:1013763409361
.

Files

Files Size Format View
ArchMathRetro_058-2022-2_1.pdf 524.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo