Previous |  Up |  Next

Article

Title: On the asymptotics of counting functions for Ahlfors regular sets (English)
Author: Pokorný, Dušan
Author: Rauch, Marc
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 1
Year: 2022
Pages: 69-119
Summary lang: English
.
Category: math
.
Summary: We deal with the so-called Ahlfors regular sets (also known as $s$-regular sets) in metric spaces. First we show that those sets correspond to a certain class of tree-like structures. Building on this observation we then study the following question: Under which conditions does the limit $\lim_{\varepsilon\to 0+} \varepsilon^s N(\varepsilon,K)$ exist, where $K$ is an $s$-regular set and $N(\varepsilon,K)$ is for instance the $\varepsilon$-packing number of $K$? (English)
Keyword: Ahlfors regular
Keyword: $s$-regular
Keyword: packing number
Keyword: Minkowski measurability
Keyword: renewal theory
MSC: 28A80
MSC: 30L99
idZBL: Zbl 07584114
idMR: MR4445738
DOI: 10.14712/1213-7243.2022.011
.
Date available: 2022-07-18T11:52:08Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/150429
.
Reference: [1] Arcozzi N., Rochberg R., Sawyer E. T., Wick B. D.: Potential theory on trees, graphs and Ahlfors-regular metric spaces.Potential Anal. 41 (2014), no. 2, 317–366. MR 3232028, 10.1007/s11118-013-9371-8
Reference: [2] Balogh Z. M., Rohner H.: Self-similar sets in doubling spaces.Illinois J. Math. 51 (2007), no. 4, 1275–1297. MR 2417427, 10.1215/ijm/1258138544
Reference: [3] Bowen R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms.Lecture Notes in Mathematics, 470, Springer, Berlin, 1975. MR 0442989, 10.1007/BFb0081284
Reference: [4] Freiberg U., Kombrink S.: Minkowski content and local Minkowski content for a class of self-conformal sets.Geom. Dedicata 159 (2012), 307–325. MR 2944534, 10.1007/s10711-011-9661-5
Reference: [5] Gatzouras D.: Lacunarity of self-similar and stochastically self-similar sets.Trans. Amer. Math. Soc. 352 (2000), no. 5, 1953–1983. Zbl 0946.28006, MR 1694290, 10.1090/S0002-9947-99-02539-8
Reference: [6] Hutchinson J. E.: Fractals and self-similarity.Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 0625600, 10.1512/iumj.1981.30.30055
Reference: [7] Kesseböhmer M., Kombrink S.: A complex Ruelle–Perron–Frobenius theorem for infinite Markov shifts with applications to renewal theory.Discrete Contin. Dyn. Syst. Ser. S 10 (2017), no. 2, 335–352. MR 3600649
Reference: [8] Kesseböhmer M., Kombrink S.: Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings.available at arXiv:1702.02854v1 [math.DS] (2017), 30 pages.
Reference: [9] Kombrink S.: Renewal theorems for a class of processes with dependent interarrival times and applications in geometry.available at arXiv:1512.08351v2 [math.PR] (2017), 25 pages. MR 3881115
Reference: [10] Lalley S. P.: The packing and covering functions of some self-similar fractals.Indiana Univ. Math. J. 37 (1988), no. 3, 699–710. MR 0962930, 10.1512/iumj.1988.37.37034
Reference: [11] Lalley S. P.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits.Acta Math. 163 (1989), no. 1–2, 1–55. MR 1007619, 10.1007/BF02392732
Reference: [12] Mattila P.: Geometry of Sets and Measures in Euclidean Spaces.Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. Zbl 0911.28005, MR 1333890
Reference: [13] Schief A.: Separation properties for self-similar sets.Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. Zbl 0807.28005, MR 1191872, 10.1090/S0002-9939-1994-1191872-1
Reference: [14] Stachó L. L.: On the volume function of parallel sets.Acta Sci. Math. (Szeged) 38 (1976), no. 3–4, 365–374. MR 0442202
Reference: [15] Winter S.: Curvature Measures and Fractals.Dissertationes Math., 453, 2008, 66 pages. MR 2423952, 10.4064/dm453-0-1
Reference: [16] Zähle M.: (S)PDE on fractals and Gaussian noise.in Recent Developments in Fractals and Related Fields, Trends Math., Birkhäuser/Springer, Cham, 2017, pages 295–312. MR 3775469
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-1_6.pdf 480.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo