| Title:
|
On non-normality points, Tychonoff products and Suslin number (English) |
| Author:
|
Logunov, Sergei |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
63 |
| Issue:
|
1 |
| Year:
|
2022 |
| Pages:
|
131-134 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let a space $X$ be Tychonoff product $\prod_{\alpha <\tau}X_{\alpha}$ of $\tau$-many Tychonoff nonsingle point spaces $X_{\alpha}$. Let Suslin number of $X$ be strictly less than the cofinality of $\tau$. Then we show that every point of remainder is a non-normality point of its Čech--Stone compactification $\beta X$. In particular, this is true if $X$ is either $R^{\tau}$ or $\omega ^{\tau}$ and a cardinal $\tau$ is infinite and not countably cofinal. (English) |
| Keyword:
|
non-normality point |
| Keyword:
|
Čech--Stone compactification |
| Keyword:
|
Tychonoff product |
| Keyword:
|
Suslin number |
| MSC:
|
54D15 |
| MSC:
|
54D35 |
| MSC:
|
54D40 |
| MSC:
|
54D80 |
| MSC:
|
54E35 |
| MSC:
|
54G20 |
| idZBL:
|
Zbl 07584116 |
| idMR:
|
MR4445740 |
| DOI:
|
10.14712/1213-7243.2022.004 |
| . |
| Date available:
|
2022-07-18T11:53:52Z |
| Last updated:
|
2024-04-01 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/150430 |
| . |
| Reference:
|
[1] Blaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Abstracta, Eighth Winter School on Abstract Analysis, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38. |
| Reference:
|
[2] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in space of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N |
| Reference:
|
[3] Fine N. J., Gillman L.: Extensions of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0 |
| Reference:
|
[4] Logunov S.: On non-normality points and metrizable crowded spaces.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527. MR 2374131 |
| Reference:
|
[5] Logunov S.: Non-normality points and big products of metrizable spaces.Topology Proc. 46 (2015), 73–85. MR 3218260 |
| Reference:
|
[6] Terasawa J.: $\beta X-\{p\}$ are non-normal for non-discrete spaces $X$.Topology Proc. 31 (2007), no. 1, 309–317. MR 2363172 |
| Reference:
|
[7] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606. MR 0292035 |
| . |