Previous |  Up |  Next

Article

Title: Stable tubes in extriangulated categories (English)
Author: Wang, Li
Author: Wei, Jiaqun
Author: Zhang, Haicheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 3
Year: 2022
Pages: 765-782
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {X}$ be a semibrick in an extriangulated category. If $\mathcal {X}$ is a $\tau $-semibrick, then the Auslander-Reiten quiver $\Gamma (\mathcal {F}(\mathcal {X}))$ of the filtration subcategory $\mathcal {F}(\mathcal {X})$ generated by $\mathcal {X}$ is $\mathbb {Z}\mathbb {A}_{\infty }$. If $\mathcal {X}=\{X_{i}\}_{i=1}^{t}$ is a $\tau $-cycle semibrick, then $\Gamma (\mathcal {F}(\mathcal {X}))$ is $\mathbb {Z}\mathbb {A}_{\infty }/\tau _{\mathbb {A}}^{t}$. (English)
Keyword: extriangulated category
Keyword: semibrick
Keyword: Auslander-Reiten quiver
MSC: 18E05
idZBL: Zbl 07584101
idMR: MR4467941
DOI: 10.21136/CMJ.2022.0145-21
.
Date available: 2022-08-22T08:22:17Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/150616
.
Reference: [1] Gorsky, M., Nakaoka, H., Palu, Y.: Positive and negative extensions in extriangulated categories.Available at https://arxiv.org/abs/2103.12482 (2021), 51 pages.
Reference: [2] Iyama, O., Nakaoka, H., Palu, Y.: Auslander-Reiten theory in extriangulated categories.Available at https://arxiv.org/abs/1805.03776 (2019), 40 pages.
Reference: [3] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures.Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. Zbl 1451.18021, MR 3931945
Reference: [4] Ringel, C. M.: Tame Algebras and Integral Quadratic Forms.Lecture Notes in Mathematics 1099. Springer, Berlin (1984). Zbl 0546.16013, MR 0774589, 10.1007/BFb0072870
Reference: [5] Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 2. Tubes and Concealed Algebras of Euclidean Type.London Mathematical Society Student Texts 71. Cambridge University Press, Cambridge (2007). Zbl 1129.16001, MR 2360503, 10.1017/CBO9780511619212
Reference: [6] Wang, L., Wei, J., Zhang, H.: Semibricks in extriangulated categories.Commun. Algebra 49 (2021), 5247-5262. Zbl 07431295, MR 4328535, 10.1080/00927872.2021.1940192
Reference: [7] Zhou, P., Zhu, B.: Triangulated quotient categories revisited.J. Algebra 502 (2018), 196-232. Zbl 1388.18014, MR 3774890, 10.1016/j.jalgebra.2018.01.031
.

Files

Files Size Format View
CzechMathJ_72-2022-3_11.pdf 288.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo