Previous |  Up |  Next

Article

Title: Bartz-Marlewski equation with generalized Lucas components (English)
Author: Hashim, Hayder R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 189-197
Summary lang: English
.
Category: math
.
Summary: Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \] where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters. (English)
Keyword: Lucas sequences
Keyword: Diophantine equation
MSC: 11B39
MSC: 11D45
idZBL: Zbl 07584090
idMR: MR4483053
DOI: 10.5817/AM2022-3-189
.
Date available: 2022-09-01T10:21:56Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150664
.
Reference: [1] Bartz, E., Marlewski, A.: A computer search of solutions of a certain Diophantine equation.Pro Dialog (in Polish, English summary) 10 (2000), 47–57.
Reference: [2] Hashim, H.R., Tengely, Sz.: Solutions of a generalized Markoff equation in Fibonacci numbers.Math. Slovaca 70 (2020), no. 5, 1069–1078. DOI: http://dx.doi.org/https://doi.org/10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414
Reference: [3] Hashim, H.R., Tengely, Sz., Szalay, L.: Markoff-Rosenberger triples and generalized Lucas sequences.Period. Math. Hung. (2021). MR 4469427
Reference: [4] Kafle, B., Srinivasan, A., Togbé, A.: Markoff equation with Pell component.Fibonacci Quart. 58 (2020), no. 3, 226–230. MR 4135896
Reference: [5] Koshy, T.: Polynomial extensions of two Gibonacci delights and their graph-theoretic confirmations.Math. Sci. 43 (2018), no. 2, 96–108 (English). MR 3888119
Reference: [6] Luca, F., Srinivasan, A.: Markov equation with Fibonacci components..Fibonacci Q. 56 (2018), no. 2, 126–129 (English). MR 3813331
Reference: [7] Marlewski, A., Zarzycki, P.: Infinitely many positive solutions of the Diophantine equation $x^{2} - kxy + y^{2} + x = 0$.Comput. Math. Appl. 47 (2004), no. 1, 115–121 (English). DOI: http://dx.doi.org/10.1016/S0898-1221(04)90010-7 MR 2062730, 10.1016/S0898-1221(04)90010-7
Reference: [8] Ribenboim, P.: My numbers, my friends. Popular lectures on number theory.New York, NY: Springer, 2000 (English). MR 1761897
Reference: [9] Srinivasan, A.: The Markoff-Fibonacci numbers.Fibonacci Q. 58 (2020), no. 5, 222–228 (English). MR 4202995
Reference: [10] Stein, W.thinspaceA., , : Sage Mathematics Software (Version 9.0).The Sage Development Team, 2020, http://www.sagemath.org.
.

Files

Files Size Format View
ArchMathRetro_058-2022-3_6.pdf 419.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo