Previous |  Up |  Next

Article

Title: Lucas sequences and repdigits (English)
Author: Hashim, Hayder Raheem
Author: Tengely, Szabolcs
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 301-318
Summary lang: English
.
Category: math
.
Summary: Let $(G_{n})_{n \geq 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\{U_n\}$ and $\{V_n\}$, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \geq 2$, $l$ is even and $1 \leq B \leq g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\{F_n\}$ and Pell numbers $\{P_n\}$. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \leq g \leq 9$ and $l=1$. (English)
Keyword: Diophantine equation
Keyword: Lucas sequence
Keyword: repdigit
Keyword: elliptic curve
MSC: 11A63
MSC: 11B37
MSC: 11B39
MSC: 11D72
MSC: 11J86
idZBL: Zbl 07584126
idMR: MR4482307
DOI: 10.21136/MB.2021.0155-20
.
Date available: 2022-09-05T09:36:08Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151009
.
Reference: [1] Adegbindin, C., Luca, F., Togbé, A.: Lucas numbers as sums of two repdigits.Lith. Math. J. 59 (2019), 295-304. Zbl 1427.11013, MR 4009815, 10.1007/s10986-019-09451-y
Reference: [2] Alekseyev, M. A., Tengely, S.: On integral points on biquadratic curves and near-multiples of squares in Lucas sequences.J. Integer Seq. 17 (2014), Article ID 14.6.6, 15 pages. Zbl 1358.11141, MR 3209790
Reference: [3] Baker, A.: The Diophantine equation $y^2=ax^3+bx^2+cx+d$.J. Lond. Math. Soc. 43 (1968), 1-9. Zbl 0155.08701, MR 0231783, 10.1112/jlms/s1-43.1.1
Reference: [4] Baker, A.: Bounds for the solutions of the hyperelliptic equation.Proc. Camb. Philos. Soc. 65 (1969), 439-444. Zbl 0174.33803, MR 0234912, 10.1017/S0305004100044418
Reference: [5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I: The user language.J. Symb. Comput. 24 (1997), 235-265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [6] Bravo, J. J., Luca, F.: Repdigits as sums of two $k$-Fibonacci numbers.Monatsh. Math. 176 (2015), 31-51. Zbl 1390.11034, MR 3296202, 10.1007/s00605-014-0622-6
Reference: [7] Brindza, B.: On $S$-integral solutions of the equation $y^m=f(x)$.Acta Math. Hung. 44 (1984), 133-139. Zbl 0552.10009, MR 0759041, 10.1007/BF01974110
Reference: [8] Bugeaud, Y.: Bounds for the solutions of superelliptic equations.Compos. Math. 107 (1997), 187-219. Zbl 0886.11016, MR 1458749, 10.1023/A:1000130114331
Reference: [9] Bugeaud, Y., Mignotte, M.: On integers with identical digits.Mathematika 46 (1999), 411-417. Zbl 1033.11012, MR 1832631, 10.1112/S0025579300007865
Reference: [10] Alvarado, S. Díaz, Luca, F.: Fibonacci numbers which are sums of two repdigits.Proceedings of the 14th International Conference on Fibonacci Numbers and Their Applications Sociedad Matemática Mexicana, Mexico (2011), 97-108. Zbl 1287.11021, MR 3243271
Reference: [11] Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport.Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552, 10.1093/qmathj/49.3.291
Reference: [12] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digit.Ann. Math. Inform. 45 (2015), 55-60. Zbl 1349.11023, MR 3438812
Reference: [13] Gebel, J., Pethő, A., Zimmer, H. G.: Computing integral points on elliptic curves.Acta Arith. 68 (1994), 171-192. Zbl 0816.11019, MR 1305199, 10.4064/aa-68-2-171-192
Reference: [14] Hajdu, L., Herendi, T.: Explicit bounds for the solutions of elliptic equations with rational coefficients.J. Symb. Comput. 25 (1998), 361-366. Zbl 0923.11048, MR 1615334, 10.1006/jsco.1997.0181
Reference: [15] Jones, L., Marques, D., Togbé, A.: On terms of Lucas sequences with only one distinct digit.Indian J. Math. 57 (2015), 151-164. Zbl 1366.11013, MR 3362712
Reference: [16] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2000), 243-254. Zbl 0958.11007, MR 1759818
Reference: [17] Marques, D., Togbé, A.: On terms of linear recurrence sequences with only one distinct block of digits.Colloq. Math. 124 (2011), 145-155. Zbl 1246.11036, MR 2842943, 10.4064/cm124-2-1
Reference: [18] Marques, D., Togbé, A.: On repdigits as product of consecutive Fibonacci numbers.Rend. Ist. Mat. Univ. Trieste 44 (2012), 393-397. Zbl 1290.11008, MR 3019569
Reference: [19] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II.Izv. Math. 64 (2000), 1217-1269. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314
Reference: [20] Obláth, R.: Une propriété des puissances parfaites.Mathesis 65 (1956), 356-364 French. Zbl 0072.26503, MR 0082991
Reference: [21] Ribenboim, P.: My Numbers, My Friends: Popular Lectures on Number Theory.Springer, New York (2000). Zbl 0947.11001, MR 1761897, 10.1007/b98892
Reference: [22] Shorey, T. N., Tijdeman, R.: Exponential Diophantine Equations.Cambridge Tracts in Mathematics 87. Cambridge University Press, Cambridge (1986). Zbl 0606.10011, MR 0891406, 10.1017/CBO9780511566042
Reference: [23] Şiar, Z., Erduvan, F., Keskin, R.: Repdigits as product of two Pell or Pell-Lucas numbers.Acta Math. Univ. Comen., New Ser. 88 (2019), 247-256. Zbl 07111088, MR 3984643
Reference: [24] Sprindžuk, V. G.: Classical Diophantine Equations.Lecture Notes in Mathematics 1559. Springer, Berlin (1993). Zbl 0787.11008, MR 1288309, 10.1007/BFb0073786
Reference: [25] al., W. A. Stein et: SageMath (Version 9.0).Available at https://www.sagemath.org/.
Reference: [26] Stroeker, R. J., Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms.Acta Arith. 67 (1994), 177-196. Zbl 0805.11026, MR 1291875, 10.4064/aa-67-2-177-196
Reference: [27] Tzanakis, N.: Solving elliptic Diophantine equations by estimating linear forms in elliptic logarithms: The case of quartic equations.Acta Arith. 75 (1996), 165-190. Zbl 0858.11016, MR 1379397, 10.4064/aa-75-2-165-190
.

Files

Files Size Format View
MathBohem_147-2022-3_2.pdf 285.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo