Previous |  Up |  Next

Article

Title: New sufficient conditions for global asymptotic stability of a kind of nonlinear neutral differential equations (English)
Author: Benhadri, Mimia
Author: Caraballo, Tomás
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 3
Year: 2022
Pages: 385-405
Summary lang: English
.
Category: math
.
Summary: This paper addresses the stability study for nonlinear neutral differential equations. Thanks to a new technique based on the fixed point theory, we find some new sufficient conditions ensuring the global asymptotic stability of the solution. In this work we extend and improve some related results presented in recent works of literature. Two examples are exhibited to show the effectiveness and advantage of the results proved. (English)
Keyword: contraction mapping principle
Keyword: asymptotic stability
Keyword: neutral differential equation\looseness 1
MSC: 34K13
MSC: 34K20
MSC: 92B20
idZBL: Zbl 07584132
idMR: MR4482313
DOI: 10.21136/MB.2021.0079-20
.
Date available: 2022-09-05T09:40:15Z
Last updated: 2022-12-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151015
.
Reference: [1] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2062-2070. Zbl 1216.34069, MR 2781737, 10.1016/j.na.2010.10.050
Reference: [2] Ardjouni, A., Djoudi, A.: Fixed points and stability in neutral nonlinear differential equations with variable delays.Opusc. Math. 32 (2012), 5-19. Zbl 1254.34110, MR 2852465, 10.7494/OpMath.2012.32.1.5
Reference: [3] Ardjouni, A., Djoudi, A.: Global asymptotic stability of nonlinear neutral differential equations with variable delays.Nonlinear Stud. 23 (2016), 157-166. Zbl 1348.34126, MR 3524420
Reference: [4] Ardjouni, A., Djoudi, A.: Global asymptotic stability of nonlinear neutral differential equations with infinite delay.Transylv. J. Math. Mech. 9 (2017), 125-133. MR 3524420
Reference: [5] Brayton, R. K.: Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type.Q. Appl. Math. 24 (1966), 215-224. Zbl 0143.30701, MR 0204800, 10.1090/qam/204800
Reference: [6] Burton, T. A.: Integral equations, implicit functions, and fixed points.Proc. Am. Math. Soc. 124 (1996), 2383-2390. Zbl 0873.45003, MR 1346965, 10.1090/S0002-9939-96-03533-2
Reference: [7] Burton, T. A.: Liapunov functionals, fixed points, and stability by Krasnoselskii's theorem.Nonlinear Stud. 9 (2002), 181-190. Zbl 1084.47522, MR 1898587
Reference: [8] Burton, T. A.: Stability by fixed point theory or Liapunov theory: A comparison.Fixed Point Theory 4 (2003), 15-32. Zbl 1061.47065, MR 2031819
Reference: [9] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.Dover Publications, New York (2006). Zbl 1160.34001, MR 2281958
Reference: [10] Dib, Y. M., Maroun, M. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear differential equations with functional delay.Electron. J. Differ. Equ. 2005 (2005), Article ID 142, 11 pages. Zbl 1097.34049, MR 2181286
Reference: [11] Djoudi, A., Khemis, R.: Fixed point techniques and stability for neutral differential equations with unbounded delays.Georgian Math. J. 13 (2006), 25-34. Zbl 1104.34052, MR 2242326, 10.1515/GMJ.2006.25
Reference: [12] Fan, M., Xia, Z., Zhu, H.: Asymptotic stability of delay differential equations via fixed point theory and applications.Can. Appl. Math. Q. 18 (2010), 361-380. Zbl 1237.34125, MR 2858144
Reference: [13] Guo, Y.: A generalization of Banach's contraction principle for some non-obviously contractive operators in a cone metric space.Turk. J. Math. 36 (2012), 297-304. Zbl 1252.54033, MR 2912045, 10.3906/mat-1005-267
Reference: [14] Guo, Y., Xu, C., Wu, J.: Stability analysis of neutral stochastic delay differential equations by a generalisation of Banach's contraction principle.Int. J. Control 90 (2017), 1555-1560. Zbl 1367.93697, MR 3658462, 10.1080/00207179.2016.1213524
Reference: [15] Hale, J. K., Meyer, K. R.: A class of functional equations of neutral type.Mem. Am. Math. Soc. 76 (1967), 65 pages. Zbl 0179.20501, MR 0223842, 10.1090/memo/0076
Reference: [16] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations.Applied Mathematical Sciences 99. Springer, New York (1993). Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7
Reference: [17] Jin, C., Luo, J.: Fixed points and stability in neutral differential equations with variable delays.Proc. Am. Math. Soc. 136 (2008), 909-918. Zbl 1136.34059, MR 2361863, 10.1090/S0002-9939-07-09089-2
Reference: [18] Kolmanovskii, V. B., Myshkis, A. D.: Applied Theory of Functional Differential Equations.Mathematics and Its Applications. Soviet Series 85. Kluwer Academic, Dordrecht (1992). Zbl 0785.34005, MR 1256486, 10.1007/978-94-015-8084-7
Reference: [19] Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics.Mathematics in Science and Engineering 191. Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880, 10.1016/s0076-5392(08)x6164-8
Reference: [20] Lisena, B.: Global attractivity in nonautonomous logistic equations with delay.Nonlinear Anal., Real World Appl. 9 (2008), 53-63. Zbl 1139.34052, MR 2370162, 10.1016/j.nonrwa.2006.09.002
Reference: [21] Liu, G., Yan, J.: Global asymptotic stability of nonlinear neutral differential equation.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 1035-1041. Zbl 1457.34110, MR 3119279, 10.1016/j.cnsns.2013.08.035
Reference: [22] Luo, J.: Fixed points and stability of neutral stochastic delay differential equations.J. Math. Anal. Appl. 334 (2007), 431-440. Zbl 1160.60020, MR 2332567, 10.1016/j.jmaa.2006.12.058
Reference: [23] Monje, A. A. Z. Mahdi, Ahmed, B. A. A.: Using Banach fixed point theorem to study the stability of first-order delay differential equations.Al-Nahrain J. Sci. 23 (2020), 69-72. 10.22401/ANJS.23.1.10
Reference: [24] Pinto, M., Sepúlveda, D.: $h$-asymptotic stability by fixed point in neutral nonlinear differential equations with delay.Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 3926-3933. Zbl 1237.34129, MR 2802978, 10.1016/j.na.2011.02.029
Reference: [25] Raffoul, Y. N.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory.Math. Comput. Modelling 40 (2004), 691-700. Zbl 1083.34536, MR 2106161, 10.1016/j.mcm.2004.10.001
Reference: [26] Seifert, G.: Liapunov-Razumikhin conditions for stability and boundedness of functional differential equations of Volterra type.J. Differ. Equations 14 (1973), 424-430. Zbl 0248.34078, MR 0492745, 10.1016/0022-0396(73)90058-2
Reference: [27] Smart, D. R.: Fixed Points Theorems.Cambridge Tracts in Mathematics 66. Cambridge University Press, Cambridge (1980). Zbl 0427.47036, MR 0467717
Reference: [28] Tunç, C.: Stability and boundedness of solutions of non-autonomous differential equations of second order.J. Comput. Anal. Appl. 13 (2011), 1067-1074. Zbl 1227.34054, MR 2789545
Reference: [29] Tunç, C.: Asymptotic stability of solutions of a class of neutral differential equations with multiple deviating arguments.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 57 (2014), 121-130. Zbl 1340.34273, MR 3204786
Reference: [30] Tunç, C.: Convergence of solutions of nonlinear neutral differential equations with multiple delays.Bol. Soc. Mat. Mex., III. Ser. 21 (2015), 219-231. Zbl 1327.34126, MR 3377988, 10.1007/s40590-014-0050-6
Reference: [31] Tunç, C., Sirma, A.: Stability analysis of a class of generalized neutral equations.J. Comput. Anal. Appl. 12 (2010), 754-759. Zbl 1197.34145, MR 2649294
Reference: [32] Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.J. Adv. Research 7 (2016), 165-168. 10.1016/j.jare.2015.04.005
Reference: [33] Yazgan, R., Tunç, C., Atan, Ö.: On the global asymptotic stability of solutions to neutral equations of first order.Palest. J. Math. 6 (2017), 542-550. Zbl 1369.34096, MR 3646266
Reference: [34] Zhang, B.: Contraction mapping and stability in a delay-differential equation.Dynamic Systems and Applications. Volume 4 Dynamic Publishers, Atlanta (2004), 183-190. Zbl 1079.34543, MR 2117781
Reference: [35] Zhang, B.: Fixed points and stability in differential equations with variable delays.Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), e233--e242. Zbl 1159.34348, 10.1016/j.na.2005.02.081
.

Files

Files Size Format View
MathBohem_147-2022-3_8.pdf 297.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo