Previous |  Up |  Next

Article

Title: Predictor control for wave PDE / nonlinear ODE cascaded system with boundary value-dependent propagation speed (English)
Author: Cai, Xiushan
Author: Lin, Yuhang
Author: Zhang, Junfeng
Author: Lin, Cong
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 3
Year: 2022
Pages: 400-425
Summary lang: English
.
Category: math
.
Summary: This paper investigates predictor control for wave partial differential equation (PDE) and nonlinear ordinary differential equation (ODE) cascaded system with boundary value-dependent propagation speed. A predictor control is designed first. A two-step backstepping transformation and a new time variable are employed to derive a target system whose stability is established using Lyapunov arguments. The equivalence between stability of the target and the original system is provided using the invertibility of the backstepping transformations. Stability of the closed-loop system is established by Lyapunov arguments. (English)
Keyword: cascaded system
Keyword: wave dynamics
Keyword: boundary value-dependent
Keyword: predictor control
Keyword: backstepping transformation
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 07613052
idMR: MR4494098
DOI: 10.14736/kyb-2022-3-0400
.
Date available: 2022-10-06T14:50:47Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151037
.
Reference: [1] Bekiaris-Liberis, N., Krstic, M.: Compensation of wave actuator dynamics for nonlinear systems..IEEE Trans. Automat. Control 59 (2014), 1555-1570. MR 3225229,
Reference: [2] Bresch-Pietri, D., Krstic, M.: Output-feedback adaptive control of a wave PDE with boundary anti-damping..Automatica 50 (2014), 1407-1415. MR 3198779,
Reference: [3] Cai, X., Yang, J., Liu, L., Zhang, J.: Predictor control for nonlinear systems actuated via transport PDEs with time/space varying propagation speeds..Asian J. Control (2021).
Reference: [4] Cai, X., Wu, J., Zhan, X., Zhang, X.: Inverse optimal control for linearizable nonlinear systems with input delays..Kybernetika 55 (2019), 727-739. MR 4043545,
Reference: [5] Cai, X., Liao, L., Zhang, J., Zhang, W.: Observer design for a class of nonlinear system in cascade with counter-conveting transport dynamics..Kybernetika 52 (2016), 76-88. MR 3482612
Reference: [6] Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary..Int. J. Robust. Nonlinear Control 25 (2015), 222-251. Zbl 1305.93167, MR 3293094,
Reference: [7] Cai, X., Krstic, M.: Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary..Automatica 68 (2016), 27-38. MR 3483665,
Reference: [8] Cai, X., Diagne, M.: Boundary control of nonlinear ODE/wave PDE systems with spatially-varying propagation speed..IEEE Trans. Automat. Control 66 (2021), 4401-4408. MR 4308496,
Reference: [9] Diagne, M., Bekiaris-Liberis, N., Krstic, M.: Compensation of input delay that depends on delayed input..Automatica 85 (2017), 362-373. MR 3712879,
Reference: [10] Jansen, J.: Nonlinear Dynamics of Oilwell Drillstrings..Ph.D. Thesis, Delfh University of Technology, 1993.
Reference: [11] Krstic, M.: Input delay compensation for forward complete and feedforward nonlinear systems..IEEE Trans. Automat. Control 55 (2010), 287-303. MR 2604408,
Reference: [12] Lin, C., Cai, X.: Stabilization of a class of nonlinear ODE/Wave PDE cascaded systems..IEEE Access 10 (2022), 35653-35664.
Reference: [13] Meglio, F. Di, Argomedo, F. Bribiesca, Hu, L., Krstic, M.: Stabilization of coupled linear heterodirectional hyperbolic PDE-ODE systems..Automatica 87 (2018), 281-289. MR 3733925,
Reference: [14] Su, L., Wang, J., Krstic, M.: Boundary feedback stabilization of a class of coupled hyperbolic equations with non-local terms..IEEE Trans. Automat. Control 63 (2018), 2633-2640. MR 3845992,
Reference: [15] Su, L., Chen, S., Wang, J., Krstic, M.: Stabilization of $2\times 2$ hyperbolic PDEs with recirculation in unactuated channel..Automatica 120 (2020), 109147(1-14). MR 4130471,
Reference: [16] Saldivar, M., Mondie, S., Loiseau, J., Rasvan, V.: Stick-slip oscillations in oilwell drillstrings: distributed parameter and neutral type retarded model approaches..In: Proc. 18th IFAC World Congress, Milano 2011, pp. 284-289.
Reference: [17] Sagert, C., Meglio, F., Krstic, M., Rouchon, P.: Backstepping and flatness approaches for stabilization of the stick-slip phenomenon for drilling..In: IFAC Sympositium on System Structure and Control, France 2013, pp. 779-784.
Reference: [18] Sontag, E.: Smooth stabilization implies coprime factorization..IEEE Trans. Automat. Control 34 (1989), 435-443. MR 0987806,
.

Files

Files Size Format View
Kybernetika_58-2022-3_6.pdf 942.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo