Previous |  Up |  Next

Article

Title: Resilient asynchronous primal Schur method (English)
Author: Gbikpi-Benissan, Guillaume
Author: Magoulès, Frédéric
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 67
Issue: 6
Year: 2022
Pages: 679-704
Summary lang: English
.
Category: math
.
Summary: This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures. (English)
Keyword: asynchronous iterations
Keyword: Schur complement method
Keyword: domain decomposition method
Keyword: parallel computing
MSC: 49M20
MSC: 65F10
MSC: 65N55
MSC: 65Y05
idZBL: Zbl 07613019
idMR: MR4505700
DOI: 10.21136/AM.2022.0146-21
.
Date available: 2022-10-31T13:24:57Z
Last updated: 2023-11-24
Stable URL: http://hdl.handle.net/10338.dmlcz/151052
.
Reference: [1] Amdahl, G. M.: Validity of the single processor approach to achieving large scale computing capabilities.Proceedings of the Conference AFIPS Joint Computer Conference, Atlantic City, New Jersey, USA ACM, New York (1967), 483-485. 10.1145/1465482.1465560
Reference: [2] Axelsson, O., Kolotilina, L.: Diagonally compensated reduction and related preconditioning methods.Numer. Linear Algebra Appl. 1 (1994), 155-177. Zbl 0837.65023, MR 1277800, 10.1002/nla.1680010207
Reference: [3] Bahi, J., Griepentrog, E., Miellou, J. C.: Parallel treatment of a class of differential-algebraic systems.SIAM J. Numer. Anal. 33 (1996), 1969-1980. Zbl 0859.65073, MR 1411858, 10.1137/S0036142993258105
Reference: [4] Baudet, G. M.: Asynchronous iterative methods for multiprocessors.J. Assoc. Comput. Mach. 25 (1978), 226-244. Zbl 0372.68015, MR 0494894, 10.1145/322063.322067
Reference: [5] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods.Prentice-Hall, Englewood Cliffs (1989). Zbl 0743.65107, MR 3587745
Reference: [6] Bertsekas, D. P., Tsitsiklis, J. N.: Some aspects of parallel and distributed iterative algorithms: A survey.Automatica 27 (1991), 3-21. Zbl 0728.65041, MR 1087139, 10.1016/0005-1098(91)90003-K
Reference: [7] Castel, M. J., Migallón, V., Penadés, J.: Convergence of non-stationary parallel multisplitting methods for Hermitian positive definite matrices.Math. Comput. 67 (1998), 209-220. Zbl 0895.65006, MR 1433264, 10.1090/S0025-5718-98-00893-X
Reference: [8] Chazan, D., Miranker, W.: Chaotic relaxation.Linear Algebra Appl. 2 (1969), 199-222. Zbl 0225.65043, MR 0251888, 10.1016/0024-3795(69)90028-7
Reference: [9] Fan, K.: Topological proofs for certain theorems on matrices with non-negative elements.Monatsh. Math. 62 (1958), 219-237. Zbl 0081.25104, MR 0095856, 10.1007/BF01303967
Reference: [10] Fan, K.: Note on $M$-matrices.Q. J. Math., Oxf. II. Ser. 11 (1960), 43-49. Zbl 0104.01203, MR 0117242, 10.1093/qmath/11.1.43
Reference: [11] Frommer, A., Schwandt, H., Szyld, D. B.: Asynchronous weighted additive Schwarz methods.ETNA, Electron. Trans. Numer. Anal. 5 (1997), 48-61. Zbl 0890.65027, MR 1460886
Reference: [12] Frommer, A., Szyld, D. B.: $H$-splittings and two-stage iterative methods.Numer. Math. 63 (1992), 345-356. Zbl 0764.65018, MR 1186346, 10.1007/BF01385865
Reference: [13] Gbikpi-Benissan, G., Magoulès, F.: Protocol-free asynchronous iterations termination.Adv. Eng. Softw. 146 (2020), Article ID 102827, 9 pages. 10.1016/j.advengsoft.2020.102827
Reference: [14] Krivoshapko, S. N., Rynkovskaya, M.: Five types of ruled helical surfaces for helical conveyers, support anchors and screws.MATEC Web Conf. 95 (2017), Article ID 06002, 5 pages. 10.1051/matecconf/20179506002
Reference: [15] Magoulès, F., Gbikpi-Benissan, G.: Asynchronous parareal time discretization for partial differential equations.SIAM J. Sci. Comput. 40 (2018), C704--C725. Zbl 1404.65155, MR 3878314, 10.1137/17M1149225
Reference: [16] Magoulès, F., Gbikpi-Benissan, G.: Distributed convergence detection based on global residual error under asynchronous iterations.IEEE Trans. Parallel Distrib. Syst. 29 (2018), 819-829. 10.1109/TPDS.2017.2780856
Reference: [17] Magoulès, F., Gbikpi-Benissan, G.: JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations.Adv. Eng. Softw. 119 (2018), 116-133. 10.1016/j.advengsoft.2018.01.009
Reference: [18] Magoulès, F., Roux, F.-X., Salmon, S.: Optimal discrete transmission conditions for a nonoverlapping domain decomposition method for the Helmholtz equation.SIAM J. Sci. Comput. 25 (2004), 1497-1515. Zbl 1086.65118, MR 2087323, 10.1137/S1064827502415351
Reference: [19] Magoulès, F., Szyld, D. B., Venet, C.: Asynchronous optimized Schwarz methods with and without overlap.Numer. Math. 137 (2017), 199-227. Zbl 1382.65449, MR 3679933, 10.1007/s00211-017-0872-z
Reference: [20] Magoulès, F., Venet, C.: Asynchronous iterative sub-structuring methods.Math. Comput. Simulation 145 (2018), 34-49. Zbl 07316164, MR 3725798, 10.1016/j.matcom.2016.05.009
Reference: [21] Schechter, S.: Relaxation methods for linear equations.Commun. Pure Appl. Math. 12 (1959), 313-335. Zbl 0096.09801, MR 0107361, 10.1002/cpa.3160120208
Reference: [22] Spiteri, P., Miellou, J.-C., Baz, D. El: Asynchronous Schwarz alternating method with flexible communication for the obstacle problem.Rés. Syst. Répartis Calculateurs Parallèles 13 (2001), 47-66.
Reference: [23] Spiteri, P., Miellou, J.-C., Baz, D. El: Parallel asynchronous Schwarz and multisplitting methods for a nonlinear diffusion problem.Numer. Algorithms 33 (2003), 461-474. Zbl 1033.65085, MR 2005584, 10.1023/A:1025561332238
Reference: [24] Varga, R. S.: Matrix Iterative Analysis.Springer Series in Computational Mathematics 27. Springer, Berlin (2000). Zbl 0998.65505, MR 1753713, 10.1007/978-3-642-05156-2
Reference: [25] Yun, J. H., Kim, S. W.: Convergence of two-stage iterative methods using incomplete factorization.J. Comput. Appl. Math. 166 (2004), 565-580. Zbl 1089.65027, MR 2041199, 10.1016/j.cam.2003.09.041
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo