Previous |  Up |  Next

Article

Title: Existence of weak solutions for steady flows of electrorheological fluid with Navier-slip type boundary conditions (English)
Author: Sin, Cholmin
Author: Ri, Sin-Il
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 147
Issue: 4
Year: 2022
Pages: 567-585
Summary lang: English
.
Category: math
.
Summary: We prove the existence of weak solutions for steady flows of electrorheological fluids with homogeneous Navier-slip type boundary conditions provided $p(x)>2n/(n+2)$. To prove this, we show Poincaré- and Korn-type inequalities, and then construct Lipschitz truncation functions preserving the zero normal component in variable exponent Sobolev spaces. (English)
Keyword: existence of weak solutions
Keyword: electrorheological fluid
Keyword: Lipschitz truncation
Keyword: variable exponent
MSC: 35A23
MSC: 35D30
MSC: 46E30
MSC: 46E35
MSC: 76A05
MSC: 76D03
idZBL: Zbl 07655827
idMR: MR4512174
DOI: 10.21136/MB.2022.0200-20
.
Date available: 2022-11-16T11:19:34Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151099
.
Reference: [1] Abbatiello, A., Crispo, F., Maremonti, P.: Electrorheological fluids: Ill posedness of uniqueness backward in time.Nonlinear Anal., Theory Methods Appl., Ser. A 170 (2018), 47-69. Zbl 1469.35172, MR 3765555, 10.1016/j.na.2017.12.014
Reference: [2] Bauer, S., Pauly, D.: On Korn's first inequality for mixed tangential and normal boundary conditions on bounded Lipschitz domains in $\mathbb{R}^N$.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 62 (2016), 173-188. Zbl 1364.46028, MR 3570353, 10.1007/s11565-016-0247-x
Reference: [3] Veiga, H. Beirão da: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions.Adv. Differ. Equ. 9 (2004), 1079-1114. Zbl 1103.35084, MR 2098066
Reference: [4] Veiga, H. Beirão da: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions.Commun. Pure Appl. Math. 58 (2005), 552-577. Zbl 1075.35045, MR 2119869, 10.1002/cpa.20036
Reference: [5] Bögelein, V., Duzaar, F., Habermann, J., Scheven, C.: Stationary electro-rheological fluids: Low order regularity for systems with discontinuous coefficients.Adv. Calc. Var. 5 (2012), 1-57. Zbl 1238.35095, MR 2879566, 10.1515/acv.2011.009
Reference: [6] Breit, D., Diening, L., Fuchs, M.: Solenoidal Lipschitz truncation and applications in fluid mechanics.J. Differ. Equations 253 (2012), 1910-1942. Zbl 1245.35080, MR 2943947, 10.1016/j.jde.2012.05.010
Reference: [7] Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDEs.Math. Models Methods Appl. Sci. 23 (2013), 2671-2700. Zbl 1309.76024, MR 3119635, 10.1142/S0218202513500437
Reference: [8] Bulíček, M., Gwiazda, P., Málek, J., Świerczewska-Gwiazda, A.: On unsteady flows of implicitly constituted incompressible fluids.SIAM J. Math. Anal. 44 (2012), 2756-2801. Zbl 1256.35074, MR 3023393, 10.1137/110830289
Reference: [9] Bulíček, M., Málek, J., Rajagopal, K. R.: Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity.Indiana Univ. Math. J. 56 (2007), 51-85. Zbl 1129.35055, MR 2305930, 10.1512/iumj.2007.56.2997
Reference: [10] Chen, P., Xiao, Y., Zhang, H.: Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition.Math. Methods Appl. Sci. 40 (2017), 5925-5932. Zbl 1390.35226, MR 3713338, 10.1002/mma.4443
Reference: [11] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows.Acta Appl. Math. 132 (2014), 237-250. Zbl 1295.76004, MR 3255040, 10.1007/s10440-014-9897-9
Reference: [12] Desvillettes, L., Villani, C.: On a variant of Korn's inequality arising in statistical mechanics.ESAIM, Control Optim. Calc. Var. 8 (2002), 603-619. Zbl 1092.82032, MR 1932965, 10.1051/cocv:2002036
Reference: [13] Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation.Invent. Math. 159 (2005), 245-316. Zbl 1162.82316, MR 2116276, 10.1007/s00222-004-0389-9
Reference: [14] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017. Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [15] Diening, L., Málek, J., Steinhauer, M.: On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications.ESAIM, Control Optim. Calc. Var. 14 (2008), 211-232. Zbl 1143.35037, MR 2394508, 10.1051/cocv:2007049
Reference: [16] Diening, L., Růžička, M.: An existence result for non-Newtonian fluids in non-regular domains.Discrete Contin. Dyn. Syst., Ser. S 3 (2010), 255-268. Zbl 1193.35150, MR 2610563, 10.3934/dcdss.2010.3.255
Reference: [17] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains.Ann. Acad. Sci. Fenn., Math. 35 (2010), 87-114. Zbl 1194.26022, MR 2643399, 10.5186/aasfm.2010.3506
Reference: [18] Diening, L., Schwarzacher, S., Stroffolini, B., Verde, A.: Parabolic Lipschitz truncation and caloric approximation.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 120, 27 pages. Zbl 1377.35144, MR 3672391, 10.1007/s00526-017-1209-6
Reference: [19] Ebmeyer, C.: Regularity in Sobolev spaces of steady flows of fluids with shear-dependent viscosity.Math. Methods Appl. Sci. 29 (2006), 1687-1707. Zbl 1124.35053, MR 2248563, 10.1002/mma.748
Reference: [20] Fan, X.: Boundary trace embedding theorems for variable exponent Sobolev spaces.J. Math. Anal. Appl. 339 (2008), 1395-1412. Zbl 1136.46025, MR 2377096, 10.1016/j.jmaa.2007.08.003
Reference: [21] Frehse, J., Málek, J., Steinhauer, M.: An existence result for fluids with shear dependent viscosity---steady flows.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3041-3049. Zbl 0902.35089, MR 1602949, 10.1016/S0362-546X(97)00392-1
Reference: [22] Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with sheardependent viscosity based on the Lipschitz truncation method.SIAM J. Math. Anal. 34 (2003), 1064-1083. Zbl 1050.35080, MR 2001659, 10.1137/S0036141002410988
Reference: [23] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems.Springer Monographs in Mathematics. Springer, New York (2011). Zbl 1245.35002, MR 2808162, 10.1007/978-0-387-09620-9
Reference: [24] Jiang, R., Kauranen, A.: Korn's inequality and John domains.Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 109, 18 pages. Zbl 1373.35015, MR 3669778, 10.1007/s00526-017-1196-7
Reference: [25] Kaplický, P., Tichý, J.: Boundary regularity of flows under perfect slip boundary conditions.Cent. Eur. J. Math. 11 (2013), 1243-1263. Zbl 1278.35040, MR 3047056, 10.2478/s11533-013-0232-x
Reference: [26] Kučera, P., Neustupa, J.: On robustness of a strong solution to the Navier-Stokes equations with Navier's boundary conditions in the $L^3$-norm.Nonlinearity 30 (2017), 1564-1583. Zbl 1367.35109, MR 3636311, 10.1088/1361-6544/aa6166
Reference: [27] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York (1969). Zbl 0184.52603, MR 0254401
Reference: [28] Li, Y., Li, K.: Existence of the solution to stationary Navier-Stokes equations with nonlinear slip boundary conditions.J. Math. Anal. Appl. 381 (2011), 1-9. Zbl 1221.35282, MR 2796187, 10.1016/j.jmaa.2011.04.020
Reference: [29] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [30] Mácha, V., Tichý, J.: Higher integrability of solutions to generalized Stokes system under perfect slip boundary conditions.J. Math. Fluid Mech. 16 (2014), 823-845. Zbl 1309.35089, MR 3267551, 10.1007/s00021-014-0190-5
Reference: [31] Malý, J., Ziemer, W. P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations.Mathematical Surveys and Monographs 51. American Mathematical Society, Providence (1997). Zbl 0882.35001, MR 1461542, 10.1090/surv/051
Reference: [32] Neustupa, J., Penel, P.: On regularity of a weak solution to the Navier-Stokes equations with the generalized Navier slip boundary conditions.Adv. Math. Phys. 2018 (2018), Article ID 4617020, 7 pages. Zbl 1406.35236, MR 3773415, 10.1155/2018/4617020
Reference: [33] Rădulescu, D. V., Repovš, D. D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis.Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). Zbl 1343.35003, MR 3379920, 10.1201/b18601
Reference: [34] Růžička, M.: A note on steady flow of fluids with shear dependent viscosity.Nonlinear Anal., Theory Methods Appl. 30 (1997), 3029-3039. Zbl 0906.35076, MR 1602945, 10.1016/S0362-546X(97)00391-X
Reference: [35] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [36] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain.J. Math. Anal. Appl. 445 (2017), 1025-1046. Zbl 1352.35124, MR 3543809, 10.1016/j.jmaa.2016.07.019
Reference: [37] Sin, C.: The existence of weak solutions for steady flow of electrorheological fluids with nonhomogeneous Dirichlet boundary condition.Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. Zbl 1375.35400, MR 3695973, 10.1016/j.na.2017.06.014
Reference: [38] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain.J. Math. Anal. Appl. 461 (2018), 752-776. Zbl 1387.35082, MR 3759566, 10.1016/j.jmaa.2017.10.081
Reference: [39] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains.Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. Zbl 1404.35079, MR 3886635, 10.1016/j.na.2018.08.009
Reference: [40] Solonnikov, V. A., Scadilov, V. E.: On a boundary value problem for a stationary system of Navier-Stokes equations.Proc. Steklov Inst. Math. 125 (1973), 186-199 translation from Trudy Mat. Inst. Steklov 125 1973 196-210. Zbl 0313.35063, MR 0172014
.

Files

Files Size Format View
MathBohem_147-2022-4_9.pdf 319.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo