Previous |  Up |  Next


supersymmetry; spin; BRST cohomology; gauge theories; gravity
In this short note we discuss $N$-supersymmetric worldlines of relativistic massless particles and review the known result that physical spin-$N/2$ fields are in the first BRST cohomology group. For $N=1,2,4$, emphasis is given to particular deformations of the BRST differential, that implement either a covariant derivative for a gauge theory or a metric connection in the target space seen by the particle. In the end, we comment about the possibility of incorporating Ramond-Ramond fluxes in the background.
[1] Batalin, I.A., Vilkovisky, G.A.: Quantization of Gauge theories with linearly dependent generators. Phys. Rev. D 28 (1983), 2567–2582, [Erratum: Phys.Rev.D 30, 508 (1984)]. DOI 10.1103/PhysRevD.28.2567 | MR 0726170
[2] Becchi, C., Rouet, A., Stora, R.: Renormalization of Gauge theories. Annals Phys. 98 (1976), 287–321. DOI 10.1016/0003-4916(76)90156-1 | MR 0413861
[3] Boffo, E., Sachs, I.: Spin fields for the spinning particle. JHEP 10 117 (2022). MR 4498771
[4] Bonezzi, R., Meyer, A., Sachs, I.: Einstein gravity from the $ \mathcal{N}=4 $ spinning particle. JHEP 10 (2018), 24 pp. MR 3891071
[5] Bonezzi, R., Meyer, A., Sachs, I.: A worldline theory for supergravity. JHEP 06 (2020), 26 pp. MR 4133900
[6] Brink, L., Di Vecchia, P., Howe, P.S.: A Lagrangian formulation of the classical and quantum dynamics of spinning particles. Nuclear Phys. B 118 (1977), 76–94. DOI 10.1016/0550-3213(77)90364-9 | MR 0426651
[7] Corradini, O., Schubert, C., Edwards, J.P., Ahmadiniaz, N.: Spinning particles in quantum mechanics and quantum field theory. arXiv:1512.08694, 12 2015.
[8] Dai, P., Huang, Y.T., Siegel, W.: Worldgraph approach to Yang-Mills amplitudes from N=2 spinning particle. JHEP 10 (2008), 20 pp. MR 2453018
[9] Figueroa-O’Farrill, J.: BRST cohomology.
[10] Losev, I.: Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231 (3) (2012), 1216–1270. DOI 10.1016/j.aim.2012.06.017 | MR 2964603
Partner of
EuDML logo