Previous |  Up |  Next

Article

Title: Adaptive output feedback stabilization for nonlinear systems with unknown polynomial-of-output growth rate and sensor uncertainty (English)
Author: Shen, Yanjun
Author: Lin, Lei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 4
Year: 2022
Pages: 637-660
Summary lang: English
.
Category: math
.
Summary: In this paper, the problem of adaptive output feedback stabilization is investigated for a class of nonlinear systems with sensor uncertainty in measured output and a growth rate of polynomial-of-output multiplying an unknown constant in the nonlinear terms. By developing a dual-domination approach, an adaptive observer and an output feedback controller are designed to stabilize the nonlinear system by directly utilizing the measured output with uncertainty. Besides, two types of extension are made such that the proposed methods of adaptive output feedback stabilization can be applied for nonlinear systems with a large range of sensor uncertainty. Finally, numerical simulations are provided to illustrate the correctness of the theoretical results. (English)
Keyword: adaptive stabilization
Keyword: polynomial-of-output growth rate
Keyword: measurement sensitivity
Keyword: output feedback
Keyword: observer
MSC: 93C10
MSC: 93D15
MSC: 93D21
idZBL: Zbl 07655851
idMR: MR4521860
DOI: 10.14736/kyb-2022-4-0637
.
Date available: 2022-12-02T13:21:35Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151169
.
Reference: [1] Benabdallah, A., Ayadi, H., Mabrouk, M.: Adaptive regulation of uncertain nonlinear systems by output feedback: a universal control approach..Int. J. Adaptive Control Signal Process. 28 (2014), 604-619. MR 3246132,
Reference: [2] Benabdallah, A., Belfeki, M.: Adaptive output feedback regulation for a class of uncertain feedforward nonlinear systems..Int. Adaptive Control Signal Process. 31 (2017), 695-709. MR 3653271,
Reference: [3] Chen, C., Qian, C., Sun, Z., Liang, Y.: Global output feedback stabilization of a class of nonlinear systems with unknown measurement sensitivity..IEEE Trans. Automat. Control 63 (2018), 2212-2217. MR 3820224,
Reference: [4] Chian, A., Borotto, F., Rempel, E., Rogers, C.: Attractor merging crisis in chaotic business cycles..Chaos Solitons Fractals 24 (2005), 869-875. MR 2227683,
Reference: [5] Guo, C., Xie, X.: Global output feedback control of nonlinear time-delay systems with input matching uncertainty and unknown output function..Int. J. Systems Sci. 50 (2019), 713-725. MR 3929244,
Reference: [6] Huang, Y., Liu, Y.: A compact design scheme of adaptive output feedback control for uncertain nonlinear systems..Int. J. Control 92 (2017), 261-269. MR 3938069,
Reference: [7] Khalil, H.: Nonlinear Systems..Prentice Hall, Upper Saddle River, NJ 2002. Zbl 1194.93083
Reference: [8] Koo, M., Choi, H.: Output feedback regulation of a class of lower triangular nonlinear systems with arbitrary unknown measurement sensitivity..Int. J. Control Automat. Systems 18 (2020), 2186-2194.
Reference: [9] Krishnamurthy, P., Khorrami, F.: Generalized adaptive output feedback form with unknown parameters multiplying high output relative-degree states..IEEE Trans. Automat. Control 41 (2002), 1503-1508.
Reference: [10] Krstic, M., Deng, H.: Stabilization of Uncertain Nonlinear Systems..Springer, New York 1998. MR 1639235
Reference: [11] Lantto, E.: Robust Control of Magnetic Bearings in Subcritical Machines..Ph.D Dissertation, Department of Electrical Engineering, Helsinki University of Technology, Espoo 1999.
Reference: [12] Li, W., Yao, X., Krstic, M.: Adaptive-gain observer-based stabilization of stochastic strict-feedback systems with sensor uncertainty..Automatica 120 (2020), 109112. MR 4118791,
Reference: [13] Lei, H., Lin, W.: Universal adaptive control of nonlinear systems with unknown growth rate by output feedback..Automatica. 42 (2006), 1783-1789. Zbl 1114.93057, MR 2249724,
Reference: [14] Lei, H., Lin, W.: Adaptive regulation of uncertain nonlinear systems by output feedback: a universal control approach..Systems Control Lett. 56 (2007), 529-537. Zbl 1118.93026, MR 2332005,
Reference: [15] Shang, F., Liu., Y., Zhang, C.: Adaptive output feedback stabilization for a class of nonlinear systems with inherent nonlinearities and uncertainties..Int. J. Robust Nonlinear Control 21 (2011), 157-176. MR 2790231,
Reference: [16] Sun, Z., Xing, J., Meng, Q.: Output feedback regulation of time-delay nonlinear systems with unknown continuous output function and unknown growth rate..Nonlinear Dynamics 100 (2020), 1309-1325.
Reference: [17] Van, D.: VII. Forced oscillations in a circuit with non-linear resistance..The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 3 (1927), 65-80.
Reference: [18] Yan, X., Liu, Y.: New results onglobal output-feedback stabilization for nonlinear systems with unknown growth rate..J. Control Theory Appl. 11 (2013), 401-408. MR 3083987,
Reference: [19] Yan, X., Liu, Y., Zheng, W.: Globally adaptive output-feedback stabilization for a class of uncertain nonlinear systems with unknown growth rate and unknown output function..Automatica 104 (2019), 173-181. MR 3923395,
Reference: [20] Yang, B., Lin, W.: Homogeneous observers, iterative design and global stabilization of high order nonlinear systems by smooth output feedback..IEEE Trans. Automat. Control 49 (2004), 1069-1080. MR 2071935,
Reference: [21] Yu, Y., Shen, Y.: Robust sampled-data observer design for Lipschitz nonlinear systems..Kybernetika 54 (2018), 699-717. MR 3863251,
Reference: [22] Zhai, J., Du, H., Fei, S.: Global sampled-data output feedback stabilization for a class of nonlinear systems with unknown output function..Int. J. Control 89 (2016), 469-480. MR 3450831,
Reference: [23] Zhai, J., Qian, C.: Global control of nonlinear systems with uncertain output function using homogeneous domination approach..In. J. Robust Nonlinear Control 21 (2012), 57-65. MR 2970951,
Reference: [24] Zhang, X., Lin, W.: Robust output feedback control of polynomial growth nonlinear systems with measurement uncertainty..Int. J. Robust Nonlinear Control 29 (2019), 4562-4576. MR 3994341,
Reference: [25] Zhang, D., Shen, Y.: Global output feedback sampled-date stabilization for upper-triangular nonlinear systems with improved maximum allowable transmission delay..Int. J. Robust Nonlinear Control 27 (2017), 212-235. MR 3594932,
.

Files

Files Size Format View
Kybernetika_58-2022-4_9.pdf 754.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo