Title:
|
The universal tropicalization and the Berkovich analytification (English) |
Author:
|
Giansiracusa, Jeffrey |
Author:
|
Giansiracusa, Noah |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
58 |
Issue:
|
5 |
Year:
|
2022 |
Pages:
|
790-815 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb{F}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^{\mathrm{an}}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathit{Trop}_{univ}(X)$ whose $\mathbb{T}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm{Spec}\: A$ is affine, we show that $\mathit{Trop}_{univ}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathit{Trop}_{univ}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm{Spec}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization. (English) |
Keyword:
|
tropical geometry |
Keyword:
|
tropical schemes |
Keyword:
|
idempotent semirings |
Keyword:
|
Berkovich analytification |
Keyword:
|
semivaluation |
MSC:
|
14G22 |
MSC:
|
14T05 |
idZBL:
|
Zbl 07655860 |
idMR:
|
MR4538626 |
DOI:
|
10.14736/kyb-2022-5-0790 |
. |
Date available:
|
2023-01-23T16:35:51Z |
Last updated:
|
2023-03-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151304 |
. |
Reference:
|
[1] Banerjee, S.: Tropical geometry over higher dimensional local fields..J. Reine Angew. Math. 2015 (2013), 71-87. |
Reference:
|
[2] Berkovich, V. G.: Spectral theory and analytic geometry over non-Archimedean fields..Mathematical Surveys and Monographs, American Mathematical Society 33, Providence 1990. |
Reference:
|
[3] Berkovich, V. G.: Smooth $p$-adic analytic spaces are locally contractible..Invent. Math. 137 (1999), 1, 1-84. |
Reference:
|
[4] Berkovich, V. G.: Smooth $p$-adic analytic spaces are locally contractible. II..In: Geometric aspects of Dwork theory. (Vol. I, II.), Walter de Gruyter, Berlin 2004, pp. 293-370. |
Reference:
|
[5] Deitmar, A.: Schemes over $\mathbb{F}_1$..In: Number fields and function fields-two parallel worlds, Progr. Math. 239, Birkhäuser Boston, Boston, 2005, pp. 87-100. |
Reference:
|
[6] Deitmar, A.: $\mathbb{F}_1$-schemes and toric varieties..Beiträge Algebra Geom. 49 (2008), 2, 517-525. |
Reference:
|
[7] Durov, N.: New approach to arakelov geometry..arXiv:0704.2030, 2007. |
Reference:
|
[8] Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties..J. Reine Angew. Math. 601 (2006), 139-157. |
Reference:
|
[9] Foster, T., Gross, P., Payne, S.: Limits of tropicalizations..Israel J. Math. 201 (2014), 2, 835-846. |
Reference:
|
[10] Foster, T., Ranganathan, D.: Hahn analytification and connectivity of higher rank tropical varieties..Manuscr. Math. 151 (2016), 3-4, 353-374. |
Reference:
|
[11] Giansiracusa, J., Giansiracusa, N.: Equations of tropical varieties..Duke Math. J. 165 (2016), 18, 3379-3433. 10.1215/00127094-3645544 |
Reference:
|
[12] Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations..arXiv:1404.7044, 2014. |
Reference:
|
[13] Hrushovski, E., Loeser, F.: Non-archimedean tame topology and stably dominated types..Ann. Math. Studies 192, Princeton University Press, Princeton 2016. |
Reference:
|
[14] Huber, R.: Étale cohomology of rigid analytic varieties and adic spaces..Aspects of Mathematics E30, Friedr. Vieweg and Sohn, Braunschweig 1996. |
Reference:
|
[15] Jun, J., Mincheva, K., Tolliver, J.: Vector bundles on tropical schemes..arXiv:2009.03030, 2020. |
Reference:
|
[16] Kajiwara, T.: Tropical toric geometry..In: Contemp. Math., Toric topology 460, Amer. Math. Soc., Providence 2008, pp. 197-207. |
Reference:
|
[17] Kato, K.: Toric singularities..Amer. J. Math. 116 (1994), 5, 1073-1099. 10.2307/2374941 |
Reference:
|
[18] Kontsevich, M., Soibelman, Y.: Affine structures and non-Archimedean analytic spaces..In: Progr. Math., The Unity Math. 244, Birkhäuser Boston, Boston 2006. pp. 321-385. |
Reference:
|
[19] Kontsevich, M., Tschinkel, Y.: Non-archimedean kähler geometry.. |
Reference:
|
[20] Kuronya, A., Souza, P., Ulirsch, M.: Tropicalization of toric prevarieties..arXiv:2107.03139, 2021. |
Reference:
|
[21] Maclagan, D., Rincón, F.: Tropical ideals..Compos. Math. 154 (2018), 3, 640-670. |
Reference:
|
[22] Maclagan, D., Rincón, F.: Tropical schemes, tropical cycles, and valuated matroids..J. Eur. Math. Soc. (JEMS) 22 (2020), 3, 777-796. |
Reference:
|
[23] Maclagan, D., Rincón, F.: Varieties of tropical ideals are balanced..arXiv:2009.14557, 2020. |
Reference:
|
[24] Maclagan, D., Sturmfels, B.: Introduction to tropical geometry..American Mathematical Society, Graduate Studies in Mathematics 161, Providence 2015. |
Reference:
|
[25] Macpherson, A. W.: Skeleta in non-Archimedean and tropical geometry..arXiv:1311.0502, 2013. |
Reference:
|
[26] Mikhalkin, G.: Tropical Geometry..Unfinish draft book. |
Reference:
|
[27] Mikhalkin, G.: Tropical geometry and its applications..In: International Congress of Mathematicians II, Eur. Math. Soc., Zürich 2006, pp. 827-852. Zbl 1103.14034 |
Reference:
|
[28] Mustata, M., Nicaise, J.: Weight functions on non-Archimedean analytic spaces and the Kontsevich-Soibelman skeleton..arXiv:1212.6328, 2013. |
Reference:
|
[29] Payne, S.: Analytification is the limit of all tropicalizations..Math. Res. Lett. 16 (2009), 3, 543-556. |
Reference:
|
[30] Payne, S.: Fibers of tropicalization..Math. Z. 262 (2009), 2, 301-311. |
Reference:
|
[31] Popescu-Pampu, P., Stepanov, D.: Local tropicalization..In: Algebraic and combinatorial aspects of tropical geometry, Contemp. Math. 589, Amer. Math. Soc., Providence 2013, pp. 253-316. |
Reference:
|
[32] Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry..In: Idempotent mathematics and mathematical physics, Contemp. Math. 377, Amer. Math. Soc., Providence 2005, pp. 289-317. Zbl 1093.14080, 10.1090/conm/377/06998 |
Reference:
|
[33] Temkin, M.: Relative Riemann-Zariski spaces..Israel J. Math. 185 (2011), 1-42. |
Reference:
|
[34] Thuillier, A.: Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. applications à la théorie d'arakelov, 2005.. |
Reference:
|
[35] Toën, B., Vaquié, M.: Au-dessous de ${\rm Spec} \mathbb{Z}$..J. K-Theory 3 (2009), 3, 437-500. |
Reference:
|
[36] Ulirsch, M.: Functorial tropicalization of logarithmic schemes: the case of constant coefficients..Proc. Lond. Math. Soc. 3 114 (2017), 6, 1081-1113. |
Reference:
|
[37] Ulirsch, M.: Non-Archimedean geometry of Artin fans..Adv. Math. 345 (2019), 346-381. |
Reference:
|
[38] Włodarczyk, J.: Embeddings in toric varieties and prevarieties..J. Algebraic Geom. 2 (1993), 4, 705-726. |
. |