Previous |  Up |  Next

Article

Title: On butterfly-points in $\beta X$, Tychonoff products and weak Lindelöf numbers (English)
Author: Logunov, Sergei
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 3
Year: 2022
Pages: 379-383
Summary lang: English
.
Category: math
.
Summary: Let $X$ be the Tychonoff product $\prod _{\alpha <\tau}X_{\alpha}$ of $\tau$-many Tychonoff non-single point spaces $X_{\alpha}$. Let $p\in X^{*}$ be a point in the closure of some $G\subset X$ whose weak Lindelöf number is strictly less than the cofinality of $\tau$. Then we show that $\beta X\setminus \{p\}$ is not normal. Under some additional assumptions, $p$ is a butterfly-point in $\beta X$. In particular, this is true if either $X=\omega^{\tau}$ or $X=R^{\tau}$ and $\tau$ is infinite and not countably cofinal. (English)
Keyword: Butterfly-point
Keyword: non-normality point
Keyword: Čech--Stone compactification
Keyword: Tychonoff product
Keyword: weak Lindelöf number
MSC: 54D15
MSC: 54D35
MSC: 54D40
MSC: 54D80
MSC: 54E35
MSC: 54G20
idZBL: Zbl 07655807
idMR: MR4542796
DOI: 10.14712/1213-7243.2022.023
.
Date available: 2023-02-01T12:12:05Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151483
.
Reference: [1] Bešlagić A., van Douwen E. K.: Spaces of nonuniform ultrafilters in space of uniform ultrafilters.Topology Appl. 35 (1990), no. 2–3, 253–260. MR 1058805, 10.1016/0166-8641(90)90110-N
Reference: [2] Błaszczyk A., Szymański A.: Some non-normal subspaces of the Čech–Stone compactification of a discrete space.Proc. Eighth Winter School on Abstract Analysis and Topology, Praha, 1980, Czechoslovak Academy of Sciences, Praha, 1980, pages 35–38.
Reference: [3] Fine N. J., Gillman L.: Extension of continuous functions in $\beta N$.Bull. Amer. Math. Soc. 66 (1960), 376–381. MR 0123291, 10.1090/S0002-9904-1960-10460-0
Reference: [4] Logunov S.: On non-normality points and metrizable crowded spaces.Comment. Math. Univ. Carolin. 48 (2007), no. 3, 523–527. MR 2374131
Reference: [5] Logunov S.: Non-normality points and big products of metrizable spaces.Topology Proc. 46 (2015), 73–85. MR 3218260
Reference: [6] Logunov S.: On non-normality points, Tychonoff products and Suslin number.Comment. Math. Univ. Carolin. 63 (2022), no. 1, 131–134. MR 4445740
Reference: [7] Shapirovskij B.: On embedding extremely disconnected spaces in compact Hausdorff spaces, $b$-points and weight of pointwise normal spaces.Dokl. Akad. Nauk SSSR 223 (1987), 1083–1086. MR 0394609
Reference: [8] Terasawa J.: $\beta X-\{p\}$ are non-normal for non-discrete spaces $X$.Topology Proc. 31 (2007), no. 1, 309–317.
Reference: [9] Warren N. M.: Properties of Stone–Čech compactifications of discrete spaces.Proc. Amer. Math. Soc. 33 (1972), 599–606.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-3_9.pdf 176.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo