Previous |  Up |  Next

Article

Title: Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production (English)
Author: Yang, Lu
Author: Liu, Xi
Author: Hou, Zhibo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 49-70
Summary lang: English
.
Category: math
.
Summary: We consider the Keller-Segel-Navier-Stokes system $$ \begin{cases} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ),& x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, &x\in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, &x\in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, &x\in \Omega ,\ t>0, \end{cases} $$ which is considered in bounded domain $\Omega \subset \mathbb {R}^N$ $(N \in \{2,3\})$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline \Omega )$ with $\delta \in (0,1)$. We show that if the initial data $\|n_0\|_{L^{{N}/{2}}(\Omega )}$, $\|\nabla v_0\|_{L^N(\Omega )}$, $\|\nabla w_0\|_{L^N(\Omega )}$ and $\|{\bf u}_0\|_{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar n}_0,{\bar n}_0,{\bar n}_0,0)$ exponentially with ${\bar n}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$. (English)
Keyword: Keller-Segel-Navier-Stokes
Keyword: global solution
Keyword: decay estimate
Keyword: indirect process
MSC: 35B35
MSC: 35B40
MSC: 35K55
MSC: 35Q35
MSC: 92C17
idZBL: Zbl 07655755
idMR: MR4541089
DOI: 10.21136/CMJ.2022.0399-21
.
Date available: 2023-02-03T11:07:34Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151504
.
Reference: [1] Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues.Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. Zbl 1326.35397, MR 3351175, 10.1142/S021820251550044X
Reference: [2] Cao, X.: Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces.Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. Zbl 06384058, MR 3294230, 10.3934/dcds.2015.35.1891
Reference: [3] Cao, X., Lankeit, J.: Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities.Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. Zbl 1366.35075, MR 3531759, 10.1007/s00526-016-1027-2
Reference: [4] Corrias, L., Perthame, B.: Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces.Math. Comput. Modelling 47 (2008), 755-764. Zbl 1134.92006, MR 2404241, 10.1016/j.mcm.2007.06.005
Reference: [5] Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids.Nonlinear Anal., Real World Appl. 21 (2015), 110-126. Zbl 1302.35102, MR 3261583, 10.1016/j.nonrwa.2014.07.001
Reference: [6] Fujie, K., Senba, T.: Application of an Adams type inequality to a two-chemical substances chemotaxis system.J. Differ. Equations 263 (2017), 88-148. Zbl 1364.35120, MR 3631302, 10.1016/j.jde.2017.02.031
Reference: [7] Fujie, K., Senba, T.: Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension.J. Differ. Equations 266 (2019), 942-976. Zbl 1406.35149, MR 3906204, 10.1016/j.jde.2018.07.068
Reference: [8] Hillen, T., Painter, K. J.: A user's guide to PDE models for chemotaxis.J. Math. Biol. 58 (2009), 183-217. Zbl 1161.92003, MR 2448428, 10.1007/s00285-008-0201-3
Reference: [9] Horstmann, D.: From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I.Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. Zbl 1071.35001, MR 2013508
Reference: [10] Jin, H.-Y.: Boundedness of the attraction-repulsion Keller-Segel system.J. Math. Anal. Appl. 422 (2015), 1463-1478. Zbl 1307.35139, MR 3269523, 10.1016/j.jmaa.2014.09.049
Reference: [11] Li, X., Xiao, Y.: Global existence and boundedness in a 2D Keller-Segel-Stokes system.Nonlinear Anal., Real World Appl. 37 (2017), 14-30. Zbl 1394.35241, MR 3648369, 10.1016/j.nonrwa.2017.02.005
Reference: [12] Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system involving a tensor-valued sensitivity with saturation.J. Differ. Equations 262 (2017), 5271-5305. Zbl 1377.35148, MR 3612542, 10.1016/j.jde.2017.01.024
Reference: [13] Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A.: Chemotactic signaling, microglia, and Alzheimer's disease senile plagues: Is there a connection?.Bull. Math. Biol. 65 (2003), 693-730. Zbl 1334.92077, 10.1016/S0092-8240(03)00030-2
Reference: [14] Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis.Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. Zbl 0901.35104, MR 1610709
Reference: [15] Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller-Segel equations.Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. Zbl 1145.37337, MR 1893940
Reference: [16] Tao, Y., Wang, Z.-A.: Competing effects of attraction vs. repulsion in chemotaxis.Math. Models Methods Appl. Sci. 23 (2013), 1-36. Zbl 1403.35136, MR 2997466, 10.1142/S0218202512500443
Reference: [17] Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system.Z. Angew. Math. Phys. 66 (2015), 2555-2573. Zbl 1328.35084, MR 3412312, 10.1007/s00033-015-0541-y
Reference: [18] Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system.Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. Zbl 1356.35054, MR 3562386, 10.1007/s00033-016-0732-1
Reference: [19] Wang, Y.: Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system with subcritical sensitivity.Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. Zbl 1378.92010, MR 3723735, 10.1142/S0218202517500579
Reference: [20] Wang, Y., Winkler, M., Xiang, Z.: Global classical solutions in a two-dimensional chemotaxis-Navier-Stokes system with subcritical sensitivity.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. Zbl 1395.92024, MR 3801284, 10.2422/2036-2145.201603_004
Reference: [21] Wang, Y., Yang, L.: Boundedness in a chemotaxis-fluid system involving a saturated sensitivity and indirect signal production mechanism.J. Differ. Equations 287 (2021), 460-490. Zbl 1464.35052, MR 4242960, 10.1016/j.jde.2021.04.001
Reference: [22] Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model.J. Differ. Equations 248 (2010), 2889-2905. Zbl 1190.92004, MR 2644137, 10.1016/j.jde.2010.02.008
Reference: [23] Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops.Commun. Partial Differ. Equations 37 (2012), 319-351. Zbl 1236.35192, MR 2876834, 10.1080/03605302.2011.591865
Reference: [24] Winkler, M.: A three-dimensional Keller-Segel-Navier-Stokes system with logistic source: Global weak solutions and asymptotic stabilization.J. Funct. Anal. 276 (2019), 1339-1401. Zbl 1408.35132, MR 3912779, 10.1016/j.jfa.2018.12.009
Reference: [25] Winkler, M.: Small-mass solutions in the two-dimensional Keller-Segel system coupled to Navier-Stokes equations.SIAM J. Math. Anal. 52 (2020), 2041-2080. Zbl 1441.35079, MR 4091876, 10.1137/19M1264199
Reference: [26] Winkler, M.: Reaction-driven relaxation in three-dimensional Keller-Segel-Navier-Stokes interaction.Commun. Math. Phys. 389 (2022), 439-489. Zbl 07463712, MR 4365145, 10.1007/s00220-021-04272-y
Reference: [27] Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller-Segel-Navier-Stokes system with matrix-valued sensitivity.J. Math. Anal. Appl. 461 (2018), 1748-1770. Zbl 1390.35381, MR 3765513, 10.1016/j.jmaa.2017.12.048
Reference: [28] Yu, P.: Blow-up prevention by saturated chemotactic sensitivity in a 2D Keller-Segel-Stokes system.Acta Appl. Math. 169 (2020), 475-497. Zbl 1470.35185, MR 4146909, 10.1007/s10440-019-00307-8
Reference: [29] Zhang, W., Niu, P., Liu, S.: Large time behavior in a chemotaxis model with logistic growth and indirect signal production.Nonlinear Anal., Real World Appl. 50 (2019), 484-497. Zbl 1435.35068, MR 3959244, 10.1016/j.nonrwa.2019.05.002
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo