Title: | Automorphism group of green algebra of weak Hopf algebra corresponding to Sweedler Hopf algebra (English) |
Author: | Cao, Liufeng |
Author: | Su, Dong |
Author: | Yao, Hua |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 1 |
Year: | 2023 |
Pages: | 101-115 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $r(\mathfrak {w}^0_2)$ be the Green ring of the weak Hopf algebra $\mathfrak {w}^0_2$ corresponding to Sweedler's 4-dimensional Hopf algebra $H_2$, and let ${\rm Aut}(R(\mathfrak {w}^0_2))$ be the automorphism group of the Green algebra $R(\mathfrak {w}^0_2)=r(\mathfrak {w}^0_2)\otimes _\mathbb {Z}\mathbb {C}$. We show that the quotient group ${\rm Aut}(R(\mathfrak {w}^0_2))/C_2\cong S_3$, where $C_2$ contains the identity map and is isomorphic to the infinite group $(\mathbb {C}^*,\times )$ and $S_3$ is the symmetric group of order 6. (English) |
Keyword: | Green algebra |
Keyword: | automorphism group |
Keyword: | weak Hopf algebra |
MSC: | 16W20 |
MSC: | 19A22 |
idZBL: | Zbl 07655757 |
idMR: | MR4541091 |
DOI: | 10.21136/CMJ.2022.0436-21 |
. | |
Date available: | 2023-02-03T11:08:29Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151506 |
. | |
Reference: | [1] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_q[sl_n]$.J. Math. Phys. 44 (2003), 5250-5267. Zbl 1063.16041, MR 2014859, 10.1063/1.1616999 |
Reference: | [2] Bardakov, V. G., Neshchadim, M. V., Sosnovsky, Y. V.: Groups of triangular automorphisms of a free associative algebra and a polynomial algebra.J. Algebra 362 (2012), 201-220. Zbl 1269.16033, MR 2921639, 10.1016/j.jalgebra.2011.03.038 |
Reference: | [3] Beattie, M., Dăscălescu, S., Grünenfelder, L.: Constructing pointed Hopf algebras by Ore extensions.J. Algebra 225 (2000), 743-770. Zbl 0948.16026, MR 1741560, 10.1006/jabr.1999.8148 |
Reference: | [4] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras.Proc. Am. Math. Soc. 142 (2014), 765-775. Zbl 1309.16021, MR 3148512, 10.1090/S0002-9939-2013-11823-X |
Reference: | [5] Dăscălescu, S.: On the dimension of the space of integrals for finite dimensional bialgebras.Stud. Sci. Math. Hung. 45 (2008), 411-417. Zbl 1188.16026, MR 2661993, 10.1556/sscmath.2008.1067 |
Reference: | [6] Dicks, W.: Automorphisms of the polynomial ring in two variables.Publ., Secc. Mat., Univ. Autòn. Barc. 27 (1983), 155-162. Zbl 0593.13005, MR 0763864 |
Reference: | [7] Drensky, V., Yu, J.-T.: Coordinates and automorphisms of polynomial and free associative algebra of rank three.Front. Math. China 2 (2007), 13-46. Zbl 1206.16015, MR 2289907, 10.1007/s11464-007-0002-9 |
Reference: | [8] Green, J. A.: The modular representation algebra of a finite group.Ill. J. Math. 6 (1962), 607-619. Zbl 0131.26401, MR 0141709, 10.1215/ijm/1255632708 |
Reference: | [9] Jia, T., Zhao, R., Li, L.: Automorphism group of Green ring of Sweedler Hopf algebra.Front. Math. China 11 (2016), 921-932. Zbl 1372.16038, MR 3531037, 10.1007/s11464-016-0565-4 |
Reference: | [10] Li, F.: Weak Hopf algebras and new solutions of the quantum Yang-Baxter equation.J. Algebra 208 (1998), 72-100. Zbl 0916.16020, MR 1643979, 10.1006/jabr.1998.7491 |
Reference: | [11] Li, L., Zhang, Y.: The Green rings of the generalized Taft Hopf algebras.Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. Zbl 1309.19001, MR 3077243, 10.1090/conm/585 |
Reference: | [12] McKay, J. H., Wang, S. S.-S.: An elementary proof of the automorphism theorem for the polynomial ring in two variables.J. Pure Appl. Algebra 52 (1988), 91-102. Zbl 0656.13002, MR 0949340, 10.1016/0022-4049(88)90137-5 |
Reference: | [13] Perepechko, A.: On solvability of the automorphism group of a finite-dimensional algebra.J. Algebra 403 (2014), 455-458. Zbl 1301.13024, MR 3166084, 10.1016/j.jalgebra.2014.01.018 |
Reference: | [14] Shestakov, I. P., Umirbaev, U. U.: The tame and the wild automorphisms of polynomial rings in three variables.J. Am. Math. Soc. 17 (2004), 197-227. Zbl 1056.14085, MR 2015334, 10.1090/S0894-0347-03-00440-5 |
Reference: | [15] Su, D., Yang, S.: Automorphism group of representation ring of the weak Hopf algebra $\widetilde{H}_8$.Czech. Math. J. 68 (2018), 1131-1148. Zbl 07031704, MR 3881903, 10.21136/CMJ.2018.0131-17 |
Reference: | [16] Su, D., Yang, S.: Green rings of weak Hopf algebras based on generalized Taft algebras.Period. Math. Hung. 76 (2018), 229-242. Zbl 1399.16085, MR 3805598, 10.1007/s10998-017-0221-0 |
Reference: | [17] Taft, E. J.: The order of the antipode of finite-dimensional Hopf algebra.Proc. Natl. Acad. Sci. USA 68 (1971), 2631-2633. Zbl 0222.16012, MR 0286868, 10.1073/pnas.68.11.2631 |
Reference: | [18] Zhao, R., Yuan, C., Li, L.: The automorphism group of Green algebra of 9-dimensional Taft Hopf algebra.Algebra Colloq. 27 (2020), 767-798. Zbl 1465.16043, MR 4170888, 10.1142/S1005386720000656 |
. |
Fulltext not available (moving wall 24 months)