Previous |  Up |  Next

Article

Title: Coprimality of integers in Piatetski-Shapiro sequences (English)
Author: Pimsert, Watcharapon
Author: Srichan, Teerapat
Author: Tangsupphathawat, Pinthira
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 197-212
Summary lang: English
.
Category: math
.
Summary: We use the estimation of the number of integers $n$ such that $\lfloor n^c \rfloor $ belongs to an arithmetic progression to study the coprimality of integers in $\mathbb {N}^c=\{ \lfloor n^c \rfloor \}_{n\in \mathbb {N}}$, $c>1$, $c\notin \mathbb {N}$. (English)
Keyword: greatest common divisor
Keyword: natural density
Keyword: Piatetski-Shapiro sequence
MSC: 11A05
MSC: 11K06
idZBL: Zbl 07655763
idMR: MR4541097
DOI: 10.21136/CMJ.2022.0044-22
.
Date available: 2023-02-03T11:12:39Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151512
.
Reference: [1] Bergelson, V., Richter, F. K.: On the density of coprime tuples of the form $(n, \lfloor f_1(n) \rfloor, \dots ,\lfloor f_k(n) \rfloor)$, where $f_1, \dots , f_k$ are functions from a Hardy field.Number Theory: Diophantine Problems, Uniform Distribution and Applications Springer, Cham (2017), 109-135. Zbl 1414.11083, MR 3676397, 10.1007/978-3-319-55357-3_5
Reference: [2] Cesàro, E.: Étude moyenne di plus grand commun diviseur de deux nombres.Ann. Mat. (2) 13 (1885), 235-250 French \99999JFM99999 17.0144.05. 10.1007/BF02420800
Reference: [3] Cesàro, E.: Sur le plus grand commun diviseur de plusieurs nombres.Ann. Mat. (2) 13 (1885), 291-294 French \99999JFM99999 17.0145.01. 10.1007/BF02420803
Reference: [4] Cohen, E.: Arithmetical functions of a greatest common divisor. I.Proc. Am. Math. Soc. 11 (1960), 164-171. Zbl 0096.02906, MR 0111713, 10.1090/S0002-9939-1960-0111713-8
Reference: [5] Delmer, F., Deshouillers, J.-M.: On the probability that $n$ and $[n^c]$ are coprime.Period. Math. Hung. 45 (2002), 15-20. Zbl 1026.11003, MR 1955189, 10.1023/A:1022337727769
Reference: [6] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences.Hardy-Ramanujan J. 41 (2018), 127-132. Zbl 1448.11055, MR 3935505
Reference: [7] Diaconis, P., Erdős, P.: On the distribution of the greatest common divisor.A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes - Monograph Series 45. Institute of Mathematical Statistics, Beachwood (2004), 56-61. Zbl 1268.11139, MR 2126886, 10.1214/lnms/1196285379
Reference: [8] Dirichlet, G. L.: Über die Bestimmung der mittleren Werthe in der Zahlentheorie.Abh. König. Preuss. Akad. Wiss. (1849), 69-83 German. 10.1017/CBO9781139237345.007
Reference: [9] Fernández, J. L., Fernández, P.: Asymptotic normality and greatest common divisors.Int. J. Number Theory 11 (2015), 89-126. Zbl 1322.11102, MR 3280945, 10.1142/S1793042115500062
Reference: [10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Oxford University Press, Oxford (2008). Zbl 1159.11001, MR 2445243
Reference: [11] Lambek, J., Moser, L.: On integers $n$ relatively prime to $f(n)$.Can. J. Math. 7 (1955), 155-158. Zbl 0064.27903, MR 0068563, 10.4153/CJM-1955-020-0
Reference: [12] Piatetski-Shapiro, I. I.: On the distribution of the prime numbers in sequences of the form $[f(n)]$.Mat. Sb., N. Ser. 33 (1953), 559-566. Zbl 0053.02702, MR 0059302
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo