Title: | On $n$-submodules and $G.n$-submodules (English) |
Author: | Karimzadeh, Somayeh |
Author: | Moghaderi, Javad |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 1 |
Year: | 2023 |
Pages: | 245-262 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We investigate some properties of $n$-submodules. More precisely, we find a necessary and sufficient condition for every proper submodule of a module to be an $n$-submodule. Also, we show that if $M$ is a finitely generated $R$-module and $ \sqrt {{{\rm Ann} }_R(M)}$ is a prime ideal of $R$, then $M$ has $n$-submodule. Moreover, we define the notion of \hbox {$G.n$-submodule}, which is a generalization of the notion of $n$-submodule. We find some characterizations of $G.n$-submodules and we examine the way the aforementioned notions are related to each other. (English) |
Keyword: | $n$-ideal |
Keyword: | $n$-submodule |
Keyword: | primary submodule |
MSC: | 13C13 |
MSC: | 16D10 |
idZBL: | Zbl 07655766 |
idMR: | MR4541100 |
DOI: | 10.21136/CMJ.2022.0094-22 |
. | |
Date available: | 2023-02-03T11:14:20Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151515 |
. | |
Reference: | [1] Ahmadi, M., Moghaderi, J.: $n$-submodules.Iran. J. Math. Sci. Inform. 17 (2022), 177-190. Zbl 7541073, MR 4411831, 10.52547/ijmsi.17.1.177 |
Reference: | [2] Ansari-Toroghy, H., Farshadifar, F.: The dual notion of multiplication modules.Taiwanese J. Math. 11 (2007), 1189-1201. Zbl 1137.16302, MR 2348561, 10.11650/twjm/1500404812 |
Reference: | [3] Atiyah, M. F., Macdonald, I. G.: An Introduction to Commutative Algebra.Addision-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802 |
Reference: | [4] Barnard, A.: Multiplication modules.J. Algebra 71 (1981), 174-178. Zbl 0468.13011, MR 0627431, 10.1016/0021-8693(81)90112-5 |
Reference: | [5] El-Bast, Z. A., Smith, P. F.: Multiplication modules.Commun. Algebra 16 (1988), 755-779. Zbl 0642.13002, MR 0932633, 10.1080/00927878808823601 |
Reference: | [6] Abdullah, N. Khalid: Irreducible submoduls and strongly irreducible submodules.Tikrit J. Pure Sci. 17 (2012), 219-224. |
Reference: | [7] Koç, S., Tekir, Ü.: $r$-submodules and $sr$-submodules.Turk. J. Math. 42 (2018), 1863-1876. Zbl 1424.13019, MR 3843951, 10.3906/mat-1702-20 |
Reference: | [8] Lu, C.: Prime submodules of modules.Comment. Math. Univ. St. Pauli 33 (1984), 61-69. Zbl 0575.13005, MR 0741378 |
Reference: | [9] Macdonald, I. G.: Secondary representation of modules over a commutative ring.Convegno di Algebra Commutativa Symposia Mathematica 11. Academic Press, London (1973), 23-43. Zbl 0271.13001, MR 0342506 |
Reference: | [10] McCasland, R. L., Moore, M. E.: Prime submodules.Commun. Algebra 20 (1992), 1803-1817. Zbl 0776.13007, MR 1162609, 10.1080/00927879208824432 |
Reference: | [11] McCasland, R. L., Moore, M. E., Smith, P. F.: On the spectrum of a module over commutative ring.Commun. Algebra 25 (1997), 79-103. Zbl 0876.13002, MR 1429749, 10.1080/00927879708825840 |
Reference: | [12] Mohamadian, R.: $r$-ideals in commutative rings.Turk. J. Math. 39 (2015), 733-749. Zbl 1348.13003, MR 3395802, 10.3906/mat-1503-35 |
Reference: | [13] Moore, M. E., Smith, S. J.: Prime and radical submodules of modules over commutative rings.Commun. Algebra 30 (2002), 5037-5064. Zbl 1049.13001, MR 1976290, 10.1081/agb-120014684 |
Reference: | [14] Tekir, U., Koc, S., Oral, K. H.: $n$-ideals of commutative rings.Filomat 31 (2017), 2933-2941. Zbl 07418085, MR 3639382, 10.2298/FIL1710933T |
. |
Fulltext not available (moving wall 24 months)