Title: | On a group-theoretical generalization of the Gauss formula (English) |
Author: | Fasolă, Georgiana |
Author: | Tărnăuceanu, Marius |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 1 |
Year: | 2023 |
Pages: | 311-317 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups. (English) |
Keyword: | Gauss formula |
Keyword: | Euler's totient function |
Keyword: | automorphism group |
Keyword: | finite group |
Keyword: | cyclic group |
Keyword: | abelian group |
MSC: | 11A25 |
MSC: | 11A99 |
MSC: | 20D60 |
MSC: | 20D99 |
idZBL: | Zbl 07655770 |
idMR: | MR4541104 |
DOI: | 10.21136/CMJ.2022.0225-22 |
. | |
Date available: | 2023-02-03T11:16:22Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151519 |
. | |
Reference: | [1] Baishya, S. J.: Revisiting the Leinster groups.C. R., Math., Acad. Sci. Paris 352 (2014), 1-6. Zbl 1292.20026, MR 3150758, 10.1016/j.crma.2013.11.009 |
Reference: | [2] Baishya, S. J., Das, A. K.: Harmonic numbers and finite groups.Rend. Semin. Mat. Univ. Padova 132 (2014), 33-43. Zbl 1314.20020, MR 3276824, 10.4171/RSMUP/132-3 |
Reference: | [3] Bidwell, J. N. S., Curran, M. J., McCaughan, D. J.: Automorphisms of direct products of finite groups.Arch. Math. 86 (2006), 481-489. Zbl 1103.20016, MR 2241597, 10.1007/s00013-005-1547-z |
Reference: | [4] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups.Bull. Lond. Math. Soc. 37 (2005), 381-385. Zbl 1072.20029, MR 2131391, 10.1112/S002460930400400X |
Reference: | [5] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups II.J. Group Theory 9 (2006), 537-547. Zbl 1103.20017, MR 2243245, 10.1515/JGT.2006.036 |
Reference: | [6] Medts, T. De, Maróti, A.: Perfect numbers and finite groups.Rend. Semin. Mat. Univ. Padova 129 (2013), 17-33. Zbl 1280.20026, MR 3090628, 10.4171/RSMUP/129-2 |
Reference: | [7] Medts, T. De, Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups.Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. Zbl 1166.20017, MR 2475493, 10.36045/bbms/1225893949 |
Reference: | [8] González-Sánchez, J., Jaikin-Zapirain, A.: Finite $p$-groups with small automorphism group.Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. Zbl 1319.20019, MR 3376735, 10.1017/fms.2015.6 |
Reference: | [9] Hillar, C. J., Rhea, D. L.: Automorphisms of finite abelian groups.Am. Math. Mon. 114 (2007), 917-923. Zbl 1156.20046, MR 2363058, 10.1080/00029890.2007.11920485 |
Reference: | [10] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92. AMS, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092 |
Reference: | [11] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian.Trans. Am. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. MR 1500650, 10.2307/1986409 |
Reference: | [12] Sehgal, A., Sehgal, S., Sharma, P. K.: The number of automorphism of a finite abelian group of rank two.J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. Zbl 07509102, MR 3502205, 10.1080/09720529.2015.1103469 |
Reference: | [13] Tărnăuceanu, M.: A generalization of the Euler's totient function.Asian-Eur. J. Math. 8 (2015), Article ID 1550087, 13 pages. Zbl 1336.20029, MR 3424162, 10.1142/S1793557115500874 |
Reference: | [14] Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups II.Commun. Algebra 45 (2017), 4865-4868. Zbl 1375.20025, MR 3670357, 10.1080/00927872.2017.1284228 |
. |
Fulltext not available (moving wall 24 months)