Previous |  Up |  Next

Article

Title: On a group-theoretical generalization of the Gauss formula (English)
Author: Fasolă, Georgiana
Author: Tărnăuceanu, Marius
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 1
Year: 2023
Pages: 311-317
Summary lang: English
.
Category: math
.
Summary: We discuss a group-theoretical generalization of the well-known Gauss formula involving the function that counts the number of automorphisms of a finite group. This gives several characterizations of finite cyclic groups. (English)
Keyword: Gauss formula
Keyword: Euler's totient function
Keyword: automorphism group
Keyword: finite group
Keyword: cyclic group
Keyword: abelian group
MSC: 11A25
MSC: 11A99
MSC: 20D60
MSC: 20D99
idZBL: Zbl 07655770
idMR: MR4541104
DOI: 10.21136/CMJ.2022.0225-22
.
Date available: 2023-02-03T11:16:22Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151519
.
Reference: [1] Baishya, S. J.: Revisiting the Leinster groups.C. R., Math., Acad. Sci. Paris 352 (2014), 1-6. Zbl 1292.20026, MR 3150758, 10.1016/j.crma.2013.11.009
Reference: [2] Baishya, S. J., Das, A. K.: Harmonic numbers and finite groups.Rend. Semin. Mat. Univ. Padova 132 (2014), 33-43. Zbl 1314.20020, MR 3276824, 10.4171/RSMUP/132-3
Reference: [3] Bidwell, J. N. S., Curran, M. J., McCaughan, D. J.: Automorphisms of direct products of finite groups.Arch. Math. 86 (2006), 481-489. Zbl 1103.20016, MR 2241597, 10.1007/s00013-005-1547-z
Reference: [4] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups.Bull. Lond. Math. Soc. 37 (2005), 381-385. Zbl 1072.20029, MR 2131391, 10.1112/S002460930400400X
Reference: [5] Bray, J. N., Wilson, R. A.: On the orders of automorphism groups of finite groups II.J. Group Theory 9 (2006), 537-547. Zbl 1103.20017, MR 2243245, 10.1515/JGT.2006.036
Reference: [6] Medts, T. De, Maróti, A.: Perfect numbers and finite groups.Rend. Semin. Mat. Univ. Padova 129 (2013), 17-33. Zbl 1280.20026, MR 3090628, 10.4171/RSMUP/129-2
Reference: [7] Medts, T. De, Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups.Bull. Belg. Math. Soc. - Simon Stevin 15 (2008), 699-704. Zbl 1166.20017, MR 2475493, 10.36045/bbms/1225893949
Reference: [8] González-Sánchez, J., Jaikin-Zapirain, A.: Finite $p$-groups with small automorphism group.Forum Math. Sigma 3 (2015), Article ID e7, 11 pages. Zbl 1319.20019, MR 3376735, 10.1017/fms.2015.6
Reference: [9] Hillar, C. J., Rhea, D. L.: Automorphisms of finite abelian groups.Am. Math. Mon. 114 (2007), 917-923. Zbl 1156.20046, MR 2363058, 10.1080/00029890.2007.11920485
Reference: [10] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92. AMS, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092
Reference: [11] Miller, G. A., Moreno, H. C.: Non-abelian groups in which every subgroup is abelian.Trans. Am. Math. Soc. 4 (1903), 398-404 \99999JFM99999 34.0173.01. MR 1500650, 10.2307/1986409
Reference: [12] Sehgal, A., Sehgal, S., Sharma, P. K.: The number of automorphism of a finite abelian group of rank two.J. Discrete Math. Sci. Cryptography 19 (2016), 163-171. Zbl 07509102, MR 3502205, 10.1080/09720529.2015.1103469
Reference: [13] Tărnăuceanu, M.: A generalization of the Euler's totient function.Asian-Eur. J. Math. 8 (2015), Article ID 1550087, 13 pages. Zbl 1336.20029, MR 3424162, 10.1142/S1793557115500874
Reference: [14] Tărnăuceanu, M.: Finite groups determined by an inequality of the orders of their subgroups II.Commun. Algebra 45 (2017), 4865-4868. Zbl 1375.20025, MR 3670357, 10.1080/00927872.2017.1284228
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo