Title:
|
Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid (English) |
Author:
|
Wróblewska-Kamińska, Aneta |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
231-243 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \rightarrow 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon\rightarrow 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck–Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves. (English) |
Keyword:
|
Oberbeck-Boussinesq approximation |
Keyword:
|
singular limit |
Keyword:
|
low Mach number |
Keyword:
|
unbounded domain |
Keyword:
|
compressible Navier-Stokes-Fourier system |
Keyword:
|
weak solutions |
Keyword:
|
no-slip boundary condition |
MSC:
|
35Q30 |
MSC:
|
35Q35 |
idZBL:
|
Zbl 07675593 |
idMR:
|
MR4563035 |
DOI:
|
10.5817/AM2023-2-231 |
. |
Date available:
|
2023-02-22T14:51:27Z |
Last updated:
|
2023-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151570 |
. |
Reference:
|
[1] Arrieta, J.M., Krejčiřík, D.: Geometric versus spectral convergence for the Neumann Laplacian under exterior perturbation of the domain.Integral Methods in Sciences and Engineering 1 (2010), 9–19. MR 2663114 |
Reference:
|
[2] Bucur, D., Feireisl, E., Nečasová, Š., Wolf, J.: On the asymptotic limit of the Navier-Stokes system in domains with rough boundaries.J. Differential Equations 244 (2008), 2890–2908. MR 2418180, 10.1016/j.jde.2008.02.040 |
Reference:
|
[3] Feireisl, E.: Incompressible limits and propagation of acoustic waves in large domains with boundaries.Commun. Math. Phys. 294 (2010), 73–95. MR 2575476, 10.1007/s00220-009-0954-6 |
Reference:
|
[4] Feireisl, E.: Local decay of acoustic waves in the low Mach number limits on general unbounded domains under slip boundary conditions.Commun. Partial Differential Equations 36 (2011), 1778–1796. MR 2832163, 10.1080/03605302.2011.602168 |
Reference:
|
[5] Feireisl, E., Karper, T., Kreml, O., Stebel, J.: Stability with respect to domain of the low Mach number limit of compressible viscous fluids.Math. Models Methods Appl. Sci. 23 (13) (2013), 2465–2493. MR 3109436, 10.1142/S0218202513500371 |
Reference:
|
[6] Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids.Birkhäuser, Basel, 2009. MR 2499296 |
Reference:
|
[7] Feireisl, E., Schonbek, M.: On the Oberbeck-Boussinesq approximation on unbounded domains.Nonlinear partial differential equations, Abel Symposial (Holden, H., Karlsen, K.H., eds.), vol. 7, Springer, Berlin, 2012. MR 3289362 |
Reference:
|
[8] Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces.Acta Math. 147 (1981), 71–88. 10.1007/BF02392869 |
Reference:
|
[9] Klein, R., Botta, N., Schneider, T., Munz, C.D., Roller, S., Meister, A., Hoffmann, L., Sonar, T.: Asymptotic adaptive methods for multi-scale problems in fluid mechanics.J. Engrg. Math. 39 (2001), 261–343. MR 1826065, 10.1023/A:1004844002437 |
Reference:
|
[10] Lighthill, J.: Waves in Fluids.Cambridge University Press, 1978. |
Reference:
|
[11] Wróblewska-Kamińska, A.: Asymptotic analysis of complete fluid system on varying domain: form compressible to incompressible flow.SIAM J. Math. Anal. 49 (5) (2017), 3299–3334. MR 3697164, 10.1137/15M1029655 |
Reference:
|
[12] Zeytounian, R.K.: Joseph Boussinesq and his approximation: a contemporary view.C.R. Mecanique 331 (2003), 575–586. 10.1016/S1631-0721(03)00120-7 |
Reference:
|
[13] Zeytounian, R.K.: Theory and Applications of Viscous Fluid Flows.Springer, Berlin, 2004. MR 2028446 |
. |