Previous |  Up |  Next

Article

Title: Regulární variace: od škálové invariance ke konvergenčním testům (Czech)
Title: Regular Variation: From Scale Invariance To Convergence Tests (English)
Author: Řehák, Pavel
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 68
Issue: 1
Year: 2023
Pages: 1-28
Summary lang: Czech
.
Category: math
.
Summary: Článek se snaží přiblížit některé aspekty teorie regulární variace. Jde o pojem z klasické analýzy, který má bohatou historii a četné aplikace v teorii pravděpodobnosti, teorii čísel, integrálních transformacích, komplexní analýze, diferenciálních rovnicích, teorii her či teorii grafů. Regulárně měnící se funkce mají souvislost s mnoha matematickými pojmy, včetně škálové invariance, kterou náš výklad začíná, či konvergenčními testy pro nekonečné řady, kterými náš výklad končí. V průběhu výkladu se zastavujeme u některých zásadních momentů vývoje teorie a u vybraných aplikací ve čtyřech z výše jmenovaných oblastí. (Czech)
MSC: 26A12
.
Date available: 2023-03-31T09:25:58Z
Last updated: 2024-04-01
Stable URL: http://hdl.handle.net/10338.dmlcz/151598
.
Reference: [1] Appleby, J. A. D., Patterson, D. D.: On necessary and sufficient conditions for preserving convergence rates to equilibrium in deterministically and stochastically perturbed differential equations with regularly varying nonlinearity.. Recent advances in delay differential and difference equations, 1–85, 94, Springer, Cham, 2014. MR 3280185
Reference: [2] Avakumović, V. G.: Sur l’équation différentielle de Thomas–Fermi.. Acad. Serbe Sci. Publ. Inst. Math. 1 (1947), 101–113. MR 0028491
Reference: [3] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular variation.. Cambridge Univ. Press, 1987. MR 0898871
Reference: [4] Bingham, N. H.: Regular variation in probability theory.. Publ. Inst. Math. 48 (1990), 169–180. MR 1105151
Reference: [5] Bingham, N. H.: Regular variation and probability: the early years.. J. Comput. Appl. Math. 200 (2007), 357–363. MR 2276837, 10.1016/j.cam.2005.11.034
Reference: [6] Bingham, N. H.: On scaling and regular variation.. Publ. Inst. Math. 97 (2015), 161–174. MR 3331244, 10.2298/PIM140202002B
Reference: [7] Bingham, N. H., Ostaszewski, A. J.: Extremes and regular variation.. Progr. Probab. 78 (2021), 121–137. MR 4425788, 10.1007/978-3-030-83309-1_7
Reference: [8] Bohner, M., Peterson, A. C.: Dynamic equations on time scales: An introduction with applications.. Birkhäuser, Boston, 2001. MR 1843232
Reference: [9] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences.. Math. Z. 134 (1973), 91–106. MR 0333082, 10.1007/BF01214468
Reference: [10] de Bruijn, N. G., van Lint, J. H.: Incomplete sums of multiplicative functions I, II.. Nederl. Akad. Wetensch. Proc. Ser. A 67, Indag. Math. 26 (1964), 339–347, 348–359. MR 0174530, 10.1016/S1385-7258(64)50040-2
Reference: [11] Delange, H.: Théoremes taubériens et applications arithmétiques.. Mém. Soc. Roy. Sci. Liege 16 (1955), 87 pp. MR 0076923
Reference: [12] Evtukhov, V. M., Samoilenko, A. M.: Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities. (Russian). Differ. Uravn. 47 (2011), 628–650; translation in Differ. Equ. 47 (2011), 627–649. Zbl 1242.34092, MR 2918280
Reference: [13] Feller, W.: An introduction to probability theory and its applications, Vol. II.. Second edition, John Wiley, New York–London–Sydney, 1971. MR 0270403
Reference: [14] Galambos, J., Seneta, E.: Regularly varying sequences.. Proc. Amer. Math. Soc. 41 (1973), 110–116. Zbl 0247.26002, MR 0323963, 10.1090/S0002-9939-1973-0323963-5
Reference: [15] Geluk, J. L.: On slowly varying solutions of the linear second order differential equation.. Publ. Inst. Math. 48 (1990), 52–60. MR 1105139
Reference: [16] Geluk, J. L., de Haan, L.: Regular variation, extensions and Tauberian theorems.. CWI Tract 40, Amsterdam, 1987. MR 0906871
Reference: [17] de Haan, L.: On regular variation and its application to the weak convergence of sample extremes.. Mathematical Centre Tracts 32, Amsterdam, 1970. MR 0286156
Reference: [18] de Haan, L., Ferreira, A.: Extreme value theory. An introduction.. Springer, New York, 2006. MR 2234156
Reference: [19] Hammond, C. N. B., Omey, E.: Regular variation and Raabe.. Dostupné z arXiv:1808.01898v1 (2018).
Reference: [20] Hardy, G. H.: Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond.. Reprint of the 1910 edition, Cambridge Tracts in Mathematics and Mathematical Physics, No. 12. Hafner Publishing Co., New York, 1971. MR 0349922
Reference: [21] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.. Nonlinear Anal. 64 (2006), 762–787. MR 2197094, 10.1016/j.na.2005.05.045
Reference: [22] Jessen, A. H., Mikosch, T.: Regularly varying functions.. Publ. Inst. Math. 80 (2006), 171–192. MR 2281913, 10.2298/PIM0694171J
Reference: [23] Karamata, J.: Über die Hardy–Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes.. Math. Z. 32 (1930), 319–320. MR 1545168, 10.1007/BF01194636
Reference: [24] Karamata, J.: Sur un mode de croissance régulière des fonctions.. Mathematica (Cluj) 4 (1930), 38–53.
Reference: [25] Karamata, J.: Sur un mode de croissance régulière, Théorèmes fondamentaux.. Bull. Soc. Math. France 61 (1933), 55–62. MR 1504998, 10.24033/bsmf.1196
Reference: [26] Kohlbecker, E. E.: Weak asymptotic properties of partitions.. Trans. Amer. Math. Soc. 88 (1958), 346–365. MR 0095808, 10.1090/S0002-9947-1958-0095808-9
Reference: [27] Korevaar, J.: Tauberian theory. A century of developments.. Springer, Berlin, 2004. MR 2073637
Reference: [28] Korevaar, J., van Aardenne-Ehrenfest, T., de Bruijn, N. G.: A note on slowly oscillating functions.. Nieuw Arch. Wiskd. 23 (1949), 77–86. MR 0027812
Reference: [29] Landau, E.: Sur les valeurs moyennes de certaines fonctions arithmétiques.. Bull. Acad. R. Belgique (1911), 443–472.
Reference: [30] Marić, V.: Regular variation and differential equations.. Lecture Notes in Mathematics 1726, Springer, 2000. MR 1753584
Reference: [31] Marić, V.: Jovan Karamata (1902–1967).. Mat. Vesnik 54 (2002), 45–51. MR 1958493
Reference: [32] Marić, V., Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions.. Publ. Inst. Math. 48 (1990), 199–207. MR 1105154
Reference: [33] Matucci, S., Řehák, P.: Extremal solutions to a system of $n$ nonlinear differential equations and regularly varying functions.. Math. Nachr. 288 (2015), 1413–1430. MR 3377126, 10.1002/mana.201400252
Reference: [34] Mijajlović, Ž., Pejović, N., Šegan, S., Damljanović, G.: On asymptotic solutions of Friedmann equations.. Appl. Math. Comput. 219 (2012), 1273–1286. MR 2981320
Reference: [35] Nair, J., Wierman, A., Zwart, B.: The fundamentals of heavy tails: Properties, emergence, and estimation.. Cambridge University Press, 2022. MR 4585805
Reference: [36] Newman, M. E. J.: Power laws, Pareto distributions and Zipf’s law.. Contemp. Phys. 46 (2005), 323–351. 10.1080/00107510500052444
Reference: [37] Niethammer, B., Pego, R. L.: Non-self-similar behavior in the LSW theory of Ostwald ripening.. J. Stat. Phys. 95 (1999), 867–902. MR 1712441, 10.1023/A:1004546215920
Reference: [38] Nikolić, A.: Karamata functions and differential equations: achievements from the 20th century.. Historia Math. 45 (2018), 277–299. MR 3832962, 10.1016/j.hm.2017.12.001
Reference: [39] Pólya, G.: Über eine neue Weise, bestimmte Integrale in der analytischen Zahlentheorie zu gebrauchen.. Göttinger Nachr. (1917), 149–159.
Reference: [40] Rădulescu, V.: Singular phenomena in nonlinear elliptic problems: from blow-up boundary solutions to equations with singular nonlinearities.. Handbook of differential equations: stationary partial differential equations, Vol. IV, 485–593, Elsevier, North-Holland, Amsterdam, 2007. MR 2569336
Reference: [41] Resnick, S. I.: Extreme values, regular variation and point processes.. Springer, 2008. MR 2364939
Reference: [42] Řehák, P.: Nonlinear differential equations in the framework of regular variation.. AMathNet, 2014. Dostupné z: http://users.math.cas.cz/~rehak/ndefrv
Reference: [43] Řehák, P.: Refined discrete regular variation and its applications.. Math. Meth. Appl. Sci. 42 (2019), 1–12. MR 4037886, 10.1002/mma.5670
Reference: [44] Řehák, P.: Kummer test and regular variation.. Monatsh. Math. 192 (2020), 419–426. MR 4098140, 10.1007/s00605-019-01361-y
Reference: [45] Řehák, P., Vítovec, J.: Regular variation on measure chains.. Nonlinear Anal. 72 (2010), 439–448. MR 2574953, 10.1016/j.na.2009.06.078
Reference: [46] Saari, D. G.: Collisions, rings, and other Newtonian $N$-body problems.. CBMS American Mathematical Society, Providence, RI, 2005. MR 2139425
Reference: [47] Seneta, E.: Regularly varying functions.. Lecture Notes in Mathematics 508, Springer, Berlin–Heidelberg–New York, 1976. Zbl 0324.26002, MR 0453936
Reference: [48] Shaposhnikov, E., Kengo, S.: Asymptotic scale invariance and its consequences.. Phys. Rev. D 99 (2019), 103528. MR 4007075, 10.1103/PhysRevD.99.103528
Reference: [49] Tomić, M.: Jovan Karamata (1902–1967). The 100th anniversary of the birthday of Academician Jovan Karamata.. Bull. Cl. Sci. Math. Nat. Sci. Math. 26 (2001), 1–30. MR 1874617
Reference: [50] Tong, J. C.: Kummer’s test gives characterizations for convergence or divergence of all positive series.. Amer. Math. Monthly 101 (1994), 450–452. MR 1272945, 10.1080/00029890.1994.11996971
Reference: [51] Zygmund, A.: Trigonometric series, Vol. I, II.. Cambridge University Press, Cambridge, 2002. MR 1963498
.

Files

Files Size Format View
PokrokyMFA_68-2023-1_1.pdf 455.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo