Previous |  Up |  Next

Article

Title: Existence and uniqueness for a two-dimensional Ventcel problem modeling the equilibrium of a prestressed membrane (English)
Author: Greco, Antonio
Author: Viglialoro, Giuseppe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 2
Year: 2023
Pages: 123-142
Summary lang: English
.
Category: math
.
Summary: This paper deals with a mixed boundary-value problem of Ventcel type in two variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary conditions involves second order differentiation along the boundary. Under suitable assumptions on the data, we first give the definition of a weak solution, and then we prove that the problem is uniquely solvable. We also consider a particular case arising in real-world applications and discuss the resulting model. (English)
Keyword: Ventcel boundary condition
Keyword: Laplace-Beltrami operator
Keyword: composite Sobolev space
Keyword: well-posedness
MSC: 35A01
MSC: 35A02
MSC: 35J25
MSC: 35M12
idZBL: Zbl 07675562
idMR: MR4574649
DOI: 10.21136/AM.2022.0095-21
.
Date available: 2023-03-31T09:32:35Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151607
.
Reference: [1] Apushkinskaya, D. E., Nazarov, A. I.: A survey of results on nonlinear Venttsel problems.Appl. Math., Praha 45 (2010), 69-80. Zbl 1058.35118, MR 1738896, 10.1023/A:1022288717033
Reference: [2] Apushkinskaya, D. E., Nazarov, A. I., Palagachev, D. K., Softova, L. G.: Venttsel boundary value problems with discontinuous data.SIAM J. Math. Anal. 53 (2021), 221-252. Zbl 1458.35182, MR 4198569, 10.1137/19M1286839
Reference: [3] Bonnaillie-Noël, V., Dambrine, M., Hérau, F., Vial, G.: On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain.SIAM J. Math. Anal. 42 (2010), 931-945. Zbl 1209.35035, MR 2644364, 10.1137/090756521
Reference: [4] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext. Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [5] Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian.Commun. Partial Differ. Equations 32 (2007), 1245-1260. Zbl 1143.26002, MR 2354493, 10.1080/03605300600987306
Reference: [6] Creo, S., Lancia, M. R., Nazarov, A., Vernole, P.: On two-dimensional nonlocal Venttsel' problems in piecewise smooth domains.Discrete Contin. Dyn. Syst., Ser. S. 12 (2019), 57-64. Zbl 1416.35098, MR 3836592, 10.3934/dcdss.2019004
Reference: [7] Carmo, M. P. do: Differential Geometry of Curves and Surfaces.Prentice-Hall, Englewood Cliffs (1976). Zbl 0326.53001, MR 0394451
Reference: [8] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019
Reference: [9] Favini, A., Goldstein, G. Ruiz, Goldstein, J. A., Romanelli, S.: The heat equation with generalized Wentzell boundary condition.J. Evol. Equ. 2 (2002), 1-19. Zbl 1043.35062, MR 1890879, 10.1007/s00028-002-8077-y
Reference: [10] Favini, A., Goldstein, G. Ruiz, Goldstein, J. A., Romanelli, S.: The heat equation with nonlinear general Wentzell boundary condition.Adv. Differ. Equ. 11 (2006), 481-510. Zbl 1149.35051, MR 2237438
Reference: [11] Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order.Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). Zbl 0562.35001, MR 0737190, 10.1007/978-3-642-61798-0
Reference: [12] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24. Pitman, Boston (1985). Zbl 0695.35060, MR 0775683, 10.1137/1.9781611972030
Reference: [13] Kashiwabara, T., Colciago, C. M., Dedè, L., Quarteroni, A.: Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem.SIAM J. Numer. Anal. 53 (2015), 105-126. Zbl 1326.65161, MR 3296617, 10.1137/140954477
Reference: [14] Luo, Y., Trudinger, N. S.: Quasilinear second order elliptic equations with Venttsel boundary conditions.Potential Anal. 3 (1994), 219-243. Zbl 0823.35059, MR 1269282, 10.1007/BF01053434
Reference: [15] McShane, E. J.: Extension of range of functions.Bull. Am. Math. Soc. 40 (1934), 837-842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [16] Nicaise, S., Li, H., Mazzucato, A.: Regularity and a priori error analysis of a Ventcel problem in polyhedral domains.Math. Methods Appl. Sci. 40 (2017), 1625-1636. Zbl 1375.35145, MR 3622421, 10.1002/mma.4083
Reference: [17] Pucci, P., Serrin, J.: The Maximum Principle.Progress in Nonlinear Differential Equations and Their Applications 73. Birkhäuser, Basel (2007). Zbl 1134.35001, MR 2356201, 10.1007/978-3-7643-8145-5
Reference: [18] Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations.Numerical Mathematics and Scientific Computation. Clarendon Press, New York (1999). Zbl 0931.65118, MR 1857663
Reference: [19] Salsa, S.: Partial Differential Equations in Action: From Modelling to Theory.Unitext 99. Springer, Cham (2016). Zbl 1383.35003, MR 3497072, 10.1007/978-3-319-31238-5
Reference: [20] Venttsel', A. D.: On boundary conditions for multidimensional diffusion processes.Theor. Probab. Appl. 4 (1959), 164-177. Zbl 0089.13404, MR 0121855, 10.1137/1104014
Reference: [21] Viglialoro, G., González, Á., Murcia, J.: A mixed finite-element finite-difference method to solve the equilibrium equations of a prestressed membrane having boundary cables.Int. J. Comput. Math. 94 (2017), 933-945. Zbl 1371.35070, MR 3625207, 10.1080/00207160.2016.1154950
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo