[3] Boumaza, N., Boulaaras, S.:
General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Methods Appl. Sci. 41 (2018), 6050-6069.
DOI 10.1002/mma.5117 |
MR 3879228 |
Zbl 1415.35038
[11] Ekinci, F., Pişkin, E., Boulaaras, S. M., Mekawy, I.:
Global existence and general decay of solutions for a quasilinear system with degenerate damping terms. J. Funct. Spaces 2021 (2021), Article ID 4316238, 10 pages.
DOI 10.1155/2021/4316238 |
MR 4283631 |
Zbl 1472.35239
[17] Hassan, J. H., Messaoudi, S. A.:
General decay results for a viscoelastic wave equation with a variable exponent nonlinearity. Asymptotic Anal. 125 (2021), 365-388.
DOI 10.3233/ASY-201661 |
MR 4374601
[18] Hrusa, W. J.:
Global existence and asymptotic stability for a semilinear hyperbolic Volterra equation with large initial data. SIAM J. Math. Anal. 16 (1985), 110-134.
DOI 10.1137/0516007 |
MR 0772871 |
Zbl 0571.45007
[19] Jleli, M., Samet, B., Vetro, C.:
Large time behavior for inhomogeneous damped wave equations with nonlinear memory. Symmetry 12 (2020), Article ID 1609, 12 pages.
DOI 10.3390/sym12101609
[24] Li, Q., He, L.:
General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping. Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages.
DOI 10.1186/s13661-018-1072-1 |
MR 3859565
[25] Lions, J. L.:
Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathematiques. Dunod, Paris (1969), French.
MR 0259693 |
Zbl 0189.40603
[26] Long, N. T., Dinh, A. P. N., Truong, L. X.:
Existence and decay of solutions of a nonlinear viscoelastic problem with a mixed nonhomogeneous condition. Numer. Funct. Anal. Optim. 29 (2008), 1363-1393.
DOI 10.1080/01630560802605955 |
MR 2479113 |
Zbl 1162.35053
[32] Ngoc, L. T. P., Quynh, D. T. N., Triet, N. A., Long, N. T.:
Linear approximation and asymptotic expansion associated to the Robin-Dirichlet problem for a Kirchhoff-Carrier equation with a viscoelastic term. Kyungpook Math. J. 59 (2019), 735-769.
MR 4057771
[34] Quynh, D. T. N., Nam, B. D., Thanh, L. T. M., Dung, T. T. M., Nhan, N. H.:
High-order iterative scheme for a viscoelastic wave equation and numerical results. Math. Probl. Eng. 2021 (2021), Article ID 9917271, 27 pages.
DOI 10.1155/2021/9917271 |
MR 4274176
[35] Shang, Y., Guo, B.:
On the problem of the existence of global solutions for a class of nonlinear convolutional intergro-differential equations of pseudoparabolic type. Acta Math. Appl. Sin. 26 (2003), 511-524 Chinese.
MR 2022221 |
Zbl 1057.45004