Previous |  Up |  Next

Article

Title: Degree polynomial for vertices in a graph and its behavior under graph operations (English)
Author: Jafarpour-Golzari, Reza
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 4
Year: 2022
Pages: 397-413
Summary lang: English
.
Category: math
.
Summary: We introduce a new concept namely the degree polynomial for the vertices of a simple graph. This notion leads to a concept, namely, the degree polynomial sequence which is stronger than the concept of degree sequence. After obtaining the degree polynomial sequence for some well-known graphs, we prove a theorem which gives a necessary condition for the realizability of a sequence of polynomials with positive integer coefficients. Also we calculate the degree polynomial for the vertices of the join, Cartesian product, tensor product, and lexicographic product of two simple graphs and for the vertices of the complement of a simple graph. Some examples, counterexamples, and open problems concerning these subjects is given as well. (English)
Keyword: degree polynomial
Keyword: degree polynomial sequence
Keyword: degree sequence
Keyword: graph operation
MSC: 05C07
MSC: 05C31
MSC: 05C76
idZBL: Zbl 07723830
idMR: MR4577038
DOI: 10.14712/1213-7243.2023.006
.
Date available: 2023-04-20T13:45:28Z
Last updated: 2023-10-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151641
.
Reference: [1] Aigner M., Triesch E.: Realizability and uniqueness in graphs.Discrete Math. 136 (1994), no. 1–3, 3–20. MR 1313278, 10.1016/0012-365X(94)00104-Q
Reference: [2] Barrus M. D., Donovan E. A.: Neighborhood degree lists of graphs.Discrete Math. 341 (2018), no. 1, 175–183. MR 3713397, 10.1016/j.disc.2017.08.027
Reference: [3] Bertram E. A.: Some applications of graph theory to finite groups.Discrete Math. 44 (1983), no. 1, 31–43. MR 0687893, 10.1016/0012-365X(83)90004-3
Reference: [4] Bondy J. A., Murty U. S. R.: Graph Theory with Applications.American Elsevier Publishing Co., New York, 1976. MR 0411988
Reference: [5] DuBois T., Eubank S., Srinivasan A.: The effect of random edge removal on network degree sequence.Electron. J. Combin. 19 (2012), no.1, #P51, 20 pages. MR 2900426, 10.37236/2093
Reference: [6] Erdös P., Gallai T.: Graphs with prescribed degree of vertices.Mat. Lapok 11 (1960), 264–274 (Hungarian). MR 0123538
Reference: [7] Hakimi S. L.: On realizability of a set of integers as degrees of the vertices of a linear graph.J. Soc. Indust. Appl. Math. 10 (1962), no. 3, 496–506. MR 0148049, 10.1137/0110037
Reference: [8] Havel V.: A remark on the existence of finite graphs.Časopis Pěst. Mat. 80 (1955), 477---480 (Czech. Russian, German summary). MR 0089420, 10.21136/CPM.1955.108220
Reference: [9] Patrinos A. N., Hakimi S. L.: Relations between graphs and integer-pair sequences.Discrete Math. 15 (1976), no. 4, 347–358. MR 0414445, 10.1016/0012-365X(76)90048-0
Reference: [10] Ritchie M., Berthouse L., Kiss I. Z.: Generation and analysis of networks with a prescribed degree sequence and subgraph family: higher-order structure matters.J. Complex Netw. 5 (2017), no. 1, 1–31. MR 3614914
Reference: [11] Tripathi A., Tyagi H.: A simple criterion on degree sequence of graphs.Discrete Appl. Math. 156 (2008), no. 18, 3513–3517. MR 2467963, 10.1016/j.dam.2008.03.033
Reference: [12] Zverovich I. È., Zverovich V. È.: Contribution to the theory of graphic sequences.Discrete Math. 105 (1992), no. 1–3, 293–303. MR 1180213, 10.1016/0012-365X(92)90152-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo