| Title:
             | 
On the class of order almost L-weakly compact operators (English) | 
| Author:
             | 
El Fahri, Kamal | 
| Author:
             | 
Khabaoui, Hassan | 
| Author:
             | 
H'michane, Jawad | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
63 | 
| Issue:
             | 
4 | 
| Year:
             | 
2022 | 
| Pages:
             | 
459-471 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We introduce a new class of operators that generalizes L-weakly compact operators, which we call order almost L-weakly compact. We give some characterizations of this class and we show that this class of operators satisfies the domination problem. (English) | 
| Keyword:
             | 
order bounded weakly convergent sequence | 
| Keyword:
             | 
L-weakly compact set | 
| Keyword:
             | 
order almost L-weakly compact operator | 
| Keyword:
             | 
L-weakly compact operator | 
| MSC:
             | 
46B42 | 
| MSC:
             | 
47B60 | 
| MSC:
             | 
47B65 | 
| idZBL:
             | 
Zbl 07723831 | 
| idMR:
             | 
MR4577041 | 
| DOI:
             | 
10.14712/1213-7243.2023.002 | 
| . | 
| Date available:
             | 
2023-04-20T13:51:30Z | 
| Last updated:
             | 
2025-01-06 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/151646 | 
| . | 
| Reference:
             | 
[1] Aliprantis C. D., Burkinshaw O.: Positive Operators.Springer, Dordrecht, 2006. Zbl 1098.47001, MR 2262133 | 
| Reference:
             | 
[2] Aqzzouz B., Elbour A.: Some new results on the class of AM-compact operators.Rend. Circ. Mat. Palermo (2) 59 (2010), no. 2, 267–275. MR 2670695, 10.1007/s12215-010-0020-4 | 
| Reference:
             | 
[3] Aqzzouz B., Elbour A., H’michane J.: Some properties of the class of positive Dunford–Pettis operators.J. Math. Anal. Appl. 354 (2009), no. 1, 295–300. MR 2510440, 10.1016/j.jmaa.2008.12.063 | 
| Reference:
             | 
[4] Aqzzouz B., H'michane J.: The duality problem for the class of order weakly compact operators.Glasg. Math. J. 51 (2009), no. 1, 101–108. MR 2471680, 10.1017/S0017089508004576 | 
| Reference:
             | 
[5] Bouras K., Lhaimer D., Moussa M.: On the class of almost L-weakly and almost M-weakly compact operators.Positivity 22 (2018), 1433–1443. MR 3863626, 10.1007/s11117-018-0586-1 | 
| Reference:
             | 
[6] Dodds P. G., Fremlin D. H.: Compact operators on Banach lattices.Israel J. Math. 34 (1979), no. 4, 287–320. MR 0570888, 10.1007/BF02760610 | 
| Reference:
             | 
[7] Elbour A., Afkir F., Sabiri M.: Some properties of almost L-weakly and almost M-weakly compact operators.Positivity 24 (2020), 141–149. MR 4052686, 10.1007/s11117-019-00671-7 | 
| Reference:
             | 
[8] El Fahri K., Khabaoui H., H'michane J.: Some characterizations of L-weakly compact sets using the unbounded absolute weak convergence and applications.Positivity 26 (2022), no. 3, Paper No. 42, 13 pages. MR 4412414 | 
| Reference:
             | 
[9] El Fahri K., Oughajji F. Z.: On the class of almost order (L) sets and applications.Rendiconti del Circolo Matematico di Palermo Series 2 70 (2021), 235–245. MR 4234309 | 
| Reference:
             | 
[10] Lhaimer D., Bouras K., Moussa M.: On the class of order L-weakly and order M-weakly compact operators.Positivity 25 (2021), no. 4, 1569–1578. MR 4301150, 10.1007/s11117-021-00829-2 | 
| Reference:
             | 
[11] Meyer-Nieberg P.: Banach Lattices.Universitext, Springer, Berlin, 1991. Zbl 0743.46015, MR 1128093 | 
| Reference:
             | 
[12] Wnuk W.: Banach lattices with properties of the Schur type---a survey.Confer. Sem. Mat. Univ. Bari (1993), No. 249, 25 pages. MR 1230964 | 
| Reference:
             | 
[13] Wnuk W.: Remarks on J. R. Holub's paper concerning Dunford–Pettis operators.Math. Japon. 38 (1993), no. 6, 1077–1080. MR 1250331 | 
| Reference:
             | 
[14] Zabeti O.: Unbounded absolute weak convergence in Banach lattices.Positivity 22 (2018), no. 2, 501–505. MR 3780811, 10.1007/s11117-017-0524-7 | 
| Reference:
             | 
[15] Zabeti O.: Unbounded continuous operators and unbounded Banach–Saks property in Banach lattices.Positivity 25 (2021), no. 5, 1989–2001. MR 4338556, 10.1007/s11117-021-00858-x | 
| . |