Previous |  Up |  Next

Article

Title: Finite convergence into a convex polytope via facet reflections (English)
Author: Ekanayake, Dinesh B.
Author: LaFountain, Douglas J.
Author: Petracovici, Boris
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 4
Year: 2023
Pages: 387-404
Summary lang: English
.
Category: math
.
Summary: The problem of utilizing facet reflections to bring a point outside of a convex polytope to inside has not been studied explicitly in the literature. Here we introduce two algorithms that complete the task in finite iterations. The first algorithm generates multiple solutions on the plane, and can be readily utilized in creating games on a plane or as a level generation method for video games. The second algorithm is a new efficient way to bring infeasible starting points of an optimization problem to inside a feasible region defined by constraints. Using simulations, we demonstrate many desirable properties of the algorithm. Specifically, more edges do not lead to more iterations in $\mathbb {R}^2$, the algorithm is extremely efficient in high dimensions, and it can be employed to discretize the feasibility region using a grid of points outside the region. (English)
Keyword: convex geometry
Keyword: optimization
Keyword: infeasible start
Keyword: strategy games
MSC: 52-08
MSC: 52B11
MSC: 52B12
MSC: 90C59
idZBL: Zbl 07729503
idMR: MR4612739
DOI: 10.21136/AM.2022.0134-22
.
Date available: 2023-07-10T14:09:43Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151701
.
Reference: [1] Ackley, D. H.: A Connectionist Machine for Genetic Hillclimbing.The Springer International Series in Engineering and Computer Science 28. Springer, New York (2012). 10.1007/978-1-4613-1997-9
Reference: [2] Bazaraa, M. S., Jarvis, J. J., Sherali, H. D.: Linear Programming and Network Flows.John Wiley & Sons, Hoboken (2005). Zbl 1061.90085, MR 2106392, 10.1002/9780471703778
Reference: [3] Boyd, S., Vandenberghe, L.: Convex Optimization.Cambridge University Press, Cambridge (2004). Zbl 1058.90049, MR 2061575, 10.1017/CBO9780511804441
Reference: [4] Dantzig, G. B., Thapa, M. N.: Linear Programming II: Theory and Extensions.Springer Series in Operations Research. Springer, New York (2003). Zbl 1029.90037, MR 1994342, 10.1007/b97283
Reference: [5] Greenberg, H. J.: Klee-Minty Polytope Shows Exponential Time Complexity of Simplex Method.University of Colorado at Denver, Denver (1997).
Reference: [6] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes: The Art of Scientific Computing.Cambridge University Press, Cambridge (2007). Zbl 1132.65001, MR 2371990
Reference: [7] Renegar, J.: A polynomial-time algorithm, based on Newton's method, for linear programming.Math. Program., Ser. A 40 (1988), 59-93. Zbl 0654.90050, MR 0923697, 10.1007/BF01580724
Reference: [8] Ye, Y., Todd, M. J., Mizuno, S.: An $O (\sqrt{n}L)$-iteration homogeneous and self-dual linear programming algorithm.Math. Oper. Res. 19 (1994), 53-67. Zbl 0799.90087, MR 1290010, 10.1287/moor.19.1.53
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo