Previous |  Up |  Next

Article

Title: A new approach to solving a quasilinear boundary value problem with $p$-Laplacian using optimization (English)
Author: Bailová, Michaela
Author: Bouchala, Jiří
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 4
Year: 2023
Pages: 425-439
Summary lang: English
.
Category: math
.
Summary: We present a novel approach to solving a specific type of quasilinear boundary value problem with $p$-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for $p=2$. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach. (English)
Keyword: $p$-Laplacian operator
Keyword: quasilinear elliptic PDE
Keyword: critical point and value
Keyword: optimization algorithm
Keyword: gradient method
MSC: 35B38
MSC: 35J92
MSC: 65N30
idZBL: Zbl 07729505
idMR: MR4612741
DOI: 10.21136/AM.2023.0194-22
.
Date available: 2023-07-10T14:11:20Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151703
.
Reference: [1] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381 \99999DOI99999 10.1016/0022-1236(73)90051-7 . Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7
Reference: [2] Bailová, M., Bouchala, J.: A mountain pass algorithm for quasilinear boundary value problem with $p$-Laplacian.Math. Comput. Simul. 189 (2021), 291-304 \99999DOI99999 10.1016/j.matcom.2021.03.006 . Zbl 07431491, MR 4297869
Reference: [3] Barutello, V., Terracini, S.: A bisection algorithm for the numerical mountain pass.NoDEA, Nonlinear Differ. Equ. Appl. 14 (2007), 527-539 \99999DOI99999 10.1007/s00030-007-4065-9 . Zbl 1141.46036, MR 2374198
Reference: [4] Bouchala, J., Drábek, P.: Strong resonance for some quasilinear elliptic equations.J. Math. Anal. Appl. 245 (2000), 7-19 \99999DOI99999 10.1006/jmaa.2000.6713 . Zbl 0970.35062, MR 1756573
Reference: [5] Chen, G., Zhou, J., Ni, W.-M.: Algorithms and visualization for solutions of nonlinear elliptic equations.Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 (2000), 1565-1612 \99999DOI99999 10.1142/S0218127400001006 . Zbl 1090.65549, MR 1780923
Reference: [6] Choi, Y. S., McKenna, P. J.: A mountain pass method for the numerical solution of semilinear elliptic problems.Nonlinear Anal., Theory Methods Appl. 20 (1993), 417-437 \99999DOI99999 10.1016/0362-546X(93)90147-K . Zbl 0779.35032, MR 1206432
Reference: [7] Ding, Z., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations.Nonlinear Anal., Theory Methods Appl. 38 (1999), 151-172 \99999DOI99999 10.1016/S0362-546X(98)00086-8 . Zbl 0941.35023, MR 1697049
Reference: [8] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities.de Gruyter Series in Nonlinear Analysis and Applications 5. Walter de Gruyter, Berlin (1997),\99999DOI99999 10.1515/9783110804775 . Zbl 0894.35002, MR 1460729
Reference: [9] Horák, J.: Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems.Numer. Math. 98 (2004), 251-276 \99999DOI99999 10.1007/s00211-004-0544-7 . Zbl 1058.65129, MR 2092742
Reference: [10] Horák, J., Holubová, G., (eds.), P. Nečesal: Proceedings of Seminar in Differential Equations: Deštné v Orlických horách, May 21-25, 2012. Volume I. Mountain Pass and Its Applications in Analysis and Numerics.University of West Bohemia, Pilsen (2012) .
Reference: [11] Huang, Y. Q., Li, R., Liu, W.: Preconditioned descent algorithms for $p$-Laplacian.J. Sci. Comput. 32 (2007), 343-371. Zbl 1134.65079, MR 2320575, 10.1007/s10915-007-9134-z
Reference: [12] Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution.Astronomy and Astrophysics Library. Springer, Berlin (2012). 10.1007/978-3-642-30304-3
Reference: [13] Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs.SIAM J. Sci. Comput. 23 (2001), 840-865 \99999DOI99999 10.1137/S1064827599365641 . Zbl 1002.35004, MR 1860967
Reference: [14] Shen, Q.: A meshless scaling iterative algorithm based on compactly supported radial basis functions for the numerical solution of Lane-Emden-Fowler equation.Numer. Methods Partial Differ. Equations 28 (2012), 554-572 \99999DOI99999 10.1002/num.20635 . Zbl 1457.65232, MR 2879794
Reference: [15] Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 34. Springer, Berlin (2000),\99999DOI99999 10.1007/978-3-662-04194-9 . Zbl 0939.49001, MR 1736116
Reference: [16] Tacheny, N., Troestler, C.: A mountain pass algorithm with projector.J. Comput. Appl. Math. 236 (2012), 2025-2036 \99999DOI99999 10.1016/j.cam.2011.11.011 . Zbl 1245.65075, MR 2863532
Reference: [17] Willem, M.: Minimax Theorems.Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser, Boston (1996),\99999DOI99999 10.1007/978-1-4612-4146-1 . Zbl 0856.49001, MR 1400007
Reference: [18] Yao, X., Zhou, J.: A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE.SIAM J. Sci. Comput. 26 (2005), 1796-1809. Zbl 1078.58009, MR 2142597, 10.1137/S1064827503430503
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo