Previous |  Up |  Next

Article

Title: Fourier diffraction theorem for the tensor fields (English)
Author: Balandin, Alexander Leonidovich
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 5
Year: 2023
Pages: 559-570
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to the electromagnetic inverse scattering problem for a dielectric anisotropic and magnetically isotropic media. The properties of an anisotropic medium with respect to electromagnetic waves are defined by the tensors, which give the relation between the inductions and the fields. The tensor Fourier diffraction theorem derived in the paper can be considered a useful tool for studying tensor fields in inverse problems of electromagnetic scattering. The method is based on the first Born approximation. (English)
Keyword: diffraction tomography
Keyword: tensor Green's function
Keyword: Born approximation
Keyword: Fourier transform
Keyword: inverse scattering
MSC: 35R30
MSC: 37K15
MSC: 78A46
DOI: 10.21136/AM.2023.0098-22
.
Date available: 2023-10-05T15:09:03Z
Last updated: 2023-10-09
Stable URL: http://hdl.handle.net/10338.dmlcz/151833
.
Reference: [1] Abhishek, A.: Support theorems for the transverse ray transform of tensor fields of rank $m$.J. Math. Anal. Appl. 485 (2020), Article ID 123828, 13 pages. Zbl 1444.53050, MR 4050692, 10.1016/j.jmaa.2019.123828
Reference: [2] Boerner, W.-M., (Eds.), H. Überall: Radar Target Imaging.Springer Series on Wave Phenomena 13. Springer, New York (1994). Zbl 0807.65132, 10.1007/978-3-642-85112-4
Reference: [3] Carney, P. S., Schotland, J. C.: Near-field tomography.Inside Out: Inverse Problems and Applications Cambridge University Press, Cambridge (2003), 133-166. Zbl 1081.78012, MR 2029680
Reference: [4] Chew, W. C.: Waves and Fields in Inhomogeneous Media.IEEE/OUP Series on Electromagnetic Wave Theory. IEEE Press, New York (1990). Zbl 0925.78002
Reference: [5] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory.Applied Mathematical Sciences 93. Springer, Berlin (1992). Zbl 0760.35053, MR 1183732, 10.1007/978-1-4614-4942-3
Reference: [6] Devaney, A. J.: Geophysical diffraction tomography.IEEE Trans. Geosci. Remote Sensing GE-22 (1984), 3-13. MR 0804623, 10.1109/TGRS.1984.350573
Reference: [7] Devaney, A. J.: Mathematical Foundations of Imaging, Tomography and Wavefield Inversion.Cambridge University Press, Cambridge (2012). Zbl 1259.65140, MR 2975719
Reference: [8] Farhat, N.: Microwave holography and coherent tomography.Medical Applications of Microwave Imaging IEEE Press, New York (1986), 66-81.
Reference: [9] Girard, C., Dereux, A.: Near-field optics theories.Rep. Progr. Phys. 59 (1996), 657-699. 10.1088/0034-4885/59/5/002
Reference: [10] Gullberg, G. T., Roy, D. G., Zeng, G. L., Alexander, A. L., Parker, D. L.: Tensor tomography.IEEE Trans. Nucl. Sci. 46 (1999), 991-1000. 10.1109/23.790810
Reference: [11] Hansen, T. B., Yaghjian, A. D.: Plane-Wave Theory of Time-Domain Fields: Near-Field Scanning Applications.IEEE Press, New York (1999). Zbl 1008.78501, MR 1767418
Reference: [12] Kak, A. C., Slaney, M.: Principles of Computerized Tomographic Imaging.Classics in Applied Mathematics 33. SIAM, Philadelphia (2001). Zbl 0984.92017, MR 1850949, 10.1137/1.9780898719277
Reference: [13] Lionheart, W. R. B., Withers, P. J.: Diffraction tomography of strain.Inverse Probl. 31 (2015), Article ID 045005, 17 pages. Zbl 1331.49050, MR 3333716, 10.1088/0266-5611/31/4/045005
Reference: [14] Mishchenko, M. I., Travis, L. D., Lacis, A. A.: Scattering, Absorption, and Emission of Light by Small Particles.Cambridge University Press, Cambridge (2002).
Reference: [15] Morse, P. M., Feshbach, H.: Methods of Theoretical Physics. Vol. I, II.McGraw-Hill, New York (1953). Zbl 0051.40603, MR 0059774
Reference: [16] Mueller, R. K., Kaveh, M., Wade, G.: Reconstructive tomography and applications to ultrasonics.Proc. IEEE 67 (1979), 567-587. 10.1109/PROC.1979.11284
Reference: [17] Nikolova, N. K.: Microwave Biomedical Imaging.Cambridge University Press, New York (2014). 10.1002/047134608X.W8214
Reference: [18] Sharafutdinov, V. A.: Integral Geometry of Tensor Fields.Inverse and Ill-posed Problems Series 1. VSP, Utrecht (1994). Zbl 0883.53004, MR 1374572, 10.1515/9783110900095
Reference: [19] Tai, C. T.: Dyadic Green Functions in Electromagnetic Theory.IEEE Press, New York (1994). Zbl 0913.73002, MR 1420621
Reference: [20] Watanabe, K.: Integral Transform Techniques for Green's Function.Lecture Notes in Applied and Computational Mechanics 71. Springer, Cham (2014). Zbl 1320.74003, MR 3100154, 10.1007/978-3-319-00879-0
Reference: [21] Wolf, E.: Three-dimensional structure determination of semi-transparent objects from holographic data.Optics Commun. 1 (1969), 153-156. 10.1016/0030-4018(69)90052-2
Reference: [22] Wolf, E.: Principles and development of diffraction tomography.Trends in Optics Research, Developments and Applications. Academic Press, New York (1996), 83-110. 10.1016/B978-012186030-1/50007-2
Reference: [23] Yaghjian, A. D.: Electric dyadic Green's functions in the source region.Proc. IEEE 68 (1980), 248-263. 10.1109/PROC.1980.11620
Reference: [24] Zhang, T., Kan, L., Godavarthi, C., Ruan, Y.: Tomographic diffractive microscopy: A review of methods and recent developments.Appl. Sci. 9 (2019), 3834-3852. 10.3390/app9183834
Reference: [25] Zhao, D., Wang, T.: Direct and inverse problems in the theory of light scattering.Progress in Optics Elsevier, Amsterdam (2012), 261-308. 10.1016/B978-0-44-459422-8.00005-9
Reference: [26] Zoughi, R.: Microwave Non-Destructive Testing and Evaluation Principles.Non-Destructive Evaluation Series 4. Springer, Dordrecht (2000). 10.1007/978-94-015-1303-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo