Previous |  Up |  Next

Article

Title: On upper bounds for total $k$-domination number via the probabilistic method (English)
Author: Sigarreta, Saylí
Author: Sigarreta, Saylé
Author: Cruz-Suárez, Hugo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 4
Year: 2023
Pages: 537-547
Summary lang: English
.
Category: math
.
Summary: For a fixed positive integer $k$ and $G=(V, E)$ a connected graph of order $n$, whose minimum vertex degree is at least $k$, a set $S\subseteq V$ is a total $k$-dominating set, also known as a $k$-tuple total dominating set, if every vertex $v\in V$ has at least $k$ neighbors in $S$. The minimum size of a total $k$-dominating set for $G$ is called the total $k$-domination number of $G$, denoted by $\gamma_{kt}(G)$. The total $k$-domination problem is to determine a minimum total $k$-dominating set of $G$. Since the exact problem is in general quite difficult to solve, it is also of interest to have good upper bounds on the total $k$-domination number. In this paper, we present a probabilistic approach to computing an upper bound for the total $k$-domination number that improves on some previous results. (English)
Keyword: domination
Keyword: $k$-tuple total domination
Keyword: probabilistic method
MSC: 05C30
MSC: 05C65
MSC: 05C69
idZBL: Zbl 07790649
idMR: MR4660377
DOI: 10.14736/kyb-2023-4-0537
.
Date available: 2023-10-17T07:54:50Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151850
.
Reference: [1] Alipour, S., Jafari, A.: Upper bounds for the domination numbers of graphs using Turán's theorem and Lovasz local lemma..Graphs Combin. 35 (2019), 1153-1160. MR 4003664,
Reference: [2] Alon, N., Spencer, J H.: The Probabilistic Method..Wiley, New York 2016. MR 3524748
Reference: [3] Bartle, R. G.: The Elements of Real Analysis..Wiley, New York 1991. MR 0393369
Reference: [4] Cockayne, E J., Dawes, R. M., Hedetniemi, S. T.: Total domination in graphs..Networks 10 (1980),3, 211-219. MR 0584887,
Reference: [5] Haynes, T. W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs..Marcel Dekker, New York 1998. MR 1605684
Reference: [6] Henning, M. A., Kazemi, A. P.: $k$-tuple total domination in graphs..Discrete Appl. Math. 158 (2010), 9, 1006-1011. MR 2607047,
Reference: [7] Henning, M. A., Yeo, A.: Strong transversals in hypergraphs and double total domination in graphs..SIAM J. Discrete Math. 24 (2010), 4, 1336-1355. MR 2735927,
Reference: [8] Henning, M. A., Yeo, A.: Total Domination in Graphs..Springer, New York 2013. MR 3060714,
Reference: [9] Malarvizhi, J., Divya, G.: Domination and edge domination in single valued neutrosophic graph..Adv. Appl. Math. Sci. 20 (2021), 5, 721-732.
Reference: [10] Pradhan, D.: Algorithmic aspects of $k$-tuple total domination in graphs..Inform. Process. Lett. 112 (2012), 21, 816-822. MR 2960327,
Reference: [11] Yuede, M., Qingqiong, C., Shunyu, Y.: Integer linear programming models for the weighted total domination problem..Appl. Math. Comput. 358 (2019), 146-150. MR 3942198,
.

Files

Files Size Format View
Kybernetika_59-2023-4_2.pdf 4.149Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo