Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Gronwall's inequality; perturbed system; practical $h$-stability
Summary:
We deal with the problem of practical uniform $h$-stability for nonlinear time-varying perturbed differential equations. The main aim is to give sufficient conditions on the linear and perturbed terms to guarantee the global existence and the practical uniform $h$-stability of the solutions based on Gronwall's type integral inequalities. Several numerical examples and an application to control systems with simulations are presented to illustrate the applicability of the obtained results.
References:
[1] Aeyels D., Peuteman J.: A new asymptotic stability criterion for nonlinear time-varying differential equations. IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971. DOI 10.1109/9.701102 | MR 1633504
[2] Bay N. S., Phat V. N.: Stability of nonlinear difference time-varying systems with delays. Vietnam J. Math. 4 (1999), 129–136. MR 1810578
[3] Bellman R.: Stability Theory of Differential Equations. McGraw-Hill Book Co., New York, 1953. MR 0061235
[4] Ben Hamed B.: On the robust practical global stability of nonlinear time-varying system. Mediterr. J. Math. 10 (2013), no. 3, 1591–1608. DOI 10.1007/s00009-012-0227-z | MR 3080228
[5] Ben Hamed B., Ellouze I., Hammami M. A.: Practical uniform stability of nonlinear differential delay equations. Mediterr. J. Math. 8 (2011), no. 4, 603–616. DOI 10.1007/s00009-010-0083-7 | MR 2860688
[6] Ben Hamed B., Haj Salem Z., Hammami M. A.: Stability of nonlinear time-varying perturbed differential equations. Nonlinear Dynam. 73 (2013), no. 3, 1353–1365. DOI 10.1007/s11071-013-0868-x | MR 3083786
[7] Ben Makhlouf A., Hammami M. A.: A nonlinear inequality and application to global asymptotic stability of perturbed systems. Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505. DOI 10.1002/mma.3236 | MR 3372295
[8] Damak H.: On the practical output $h$-stabilization of nonlinear uncertain systems. J. Appl. Nonlinear Dyn. 10 (2021), no. 4, 659–669. DOI 10.5890/JAND.2021.12.006 | MR 4292264
[9] Damak H., Hadj Taieb N., Hammami M. A.: A practical separation principle for nonlinear non-autonomous systems. Internat. J. Control 96 (2023), no. 1, 214–222. DOI 10.1080/00207179.2021.1986640 | MR 4532849
[10] Damak H., Hammami M. A., Kalitine B.: On the global uniform asymptotic stability of time-varying systems. Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124. DOI 10.1007/s12591-012-0157-z | MR 3183099
[11] Damak H., Hammami M. A., Kicha A.: A converse theorem for practical $h$-stability of time-varying nonlinear systems. New Zealand J. Math. 50 (2020), 109–123. DOI 10.53733/79 | MR 4216440
[12] Damak H., Hammami M. A., Kicha A.: A converse theorem on practical $h$-stability of nonlinear systems. Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages. DOI 10.1007/s00009-020-01518-2 | MR 4100040
[13] Damak H., Hammami M. A., Kicha A.: Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations. Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447. MR 4241341
[14] Damak H., Hammami M. A., Kicha A.: On the practical $h$-stabilization of nonlinear time-varying systems: application to separately excited DC motor. COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904. DOI 10.1108/COMPEL-05-2020-0178
[15] Dragomir S. S.: Some Gronwall Type Inequalities and Applications. School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002. MR 2016992
[16] Ellouze I., Hammami M. A.: Practical stability of impulsive control systems with multiple time delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356. MR 3098457
[17] Ghanmi B.: On the practical $h$-stability of nonlinear systems of differential equations. J. Dyn. Control Syst. 25 (2019), no. 4, 691–713. DOI 10.1007/s10883-019-09454-5 | MR 3995960
[18] Hammi M., Hammami M. A.: Gronwall–Bellman type integral inequalities and applications to global uniform asymptotic stability. Cubo 17 (2015), no. 3, 53–70. DOI 10.4067/S0719-06462015000300004 | MR 3445845
[19] Khalil H. K.: Nonlinear Systems. Prentice-Hall, New York, 2002. MR 1201326 | Zbl 1140.93456
[20] Medina R.: Perturbations of nonlinear systems of difference equations. J. Math. Anal. Appl. 204 (1996), no. 2, 545–553. DOI 10.1006/jmaa.1996.0453 | MR 1421464
[21] Pinto M.: Perturbations of asymptotically stable differential systems. Analysis 4 (1984), no. 1–2, 161–175. DOI 10.1524/anly.1984.4.12.161 | MR 0775553
[22] Pinto M.: Stability of nonlinear differential systems. Appl. Anal. 43 (1992), no. 1–2, 1–20. DOI 10.1080/00036819208840049 | MR 1284758
Partner of
EuDML logo