[1] Aeyels D., Peuteman J.:
A new asymptotic stability criterion for nonlinear time-varying differential equations. IEEE Trans. Automat. Control 43 (1998), no. 7, 968–971.
DOI 10.1109/9.701102 |
MR 1633504
[2] Bay N. S., Phat V. N.:
Stability of nonlinear difference time-varying systems with delays. Vietnam J. Math. 4 (1999), 129–136.
MR 1810578
[3] Bellman R.:
Stability Theory of Differential Equations. McGraw-Hill Book Co., New York, 1953.
MR 0061235
[5] Ben Hamed B., Ellouze I., Hammami M. A.:
Practical uniform stability of nonlinear differential delay equations. Mediterr. J. Math. 8 (2011), no. 4, 603–616.
DOI 10.1007/s00009-010-0083-7 |
MR 2860688
[6] Ben Hamed B., Haj Salem Z., Hammami M. A.:
Stability of nonlinear time-varying perturbed differential equations. Nonlinear Dynam. 73 (2013), no. 3, 1353–1365.
DOI 10.1007/s11071-013-0868-x |
MR 3083786
[7] Ben Makhlouf A., Hammami M. A.:
A nonlinear inequality and application to global asymptotic stability of perturbed systems. Math. Methods Appl. Sci. 38 (2015), no. 12, 2496–2505.
DOI 10.1002/mma.3236 |
MR 3372295
[10] Damak H., Hammami M. A., Kalitine B.:
On the global uniform asymptotic stability of time-varying systems. Differ. Equ. Dyn. Syst. 22 (2014), no. 2, 113–124.
DOI 10.1007/s12591-012-0157-z |
MR 3183099
[11] Damak H., Hammami M. A., Kicha A.:
A converse theorem for practical $h$-stability of time-varying nonlinear systems. New Zealand J. Math. 50 (2020), 109–123.
DOI 10.53733/79 |
MR 4216440
[12] Damak H., Hammami M. A., Kicha A.:
A converse theorem on practical $h$-stability of nonlinear systems. Mediterr. J. Math. 17 (2020), no. 3, Paper No. 88, 18 pages.
DOI 10.1007/s00009-020-01518-2 |
MR 4100040
[13] Damak H., Hammami M. A., Kicha A.:
Growth conditions for asymptotic behavior of solutions for certain time-varying differential equations. Differ. Uravn. Protsessy. Upr. (2021), no. 1, 423–447.
MR 4241341
[14] Damak H., Hammami M. A., Kicha A.:
On the practical $h$-stabilization of nonlinear time-varying systems: application to separately excited DC motor. COMPEL-Int. J. Comput. Math. Electr. Electron Eng. 40 (2021), no. 4, 888–904.
DOI 10.1108/COMPEL-05-2020-0178
[15] Dragomir S. S.:
Some Gronwall Type Inequalities and Applications. School of Communications and Informatics, Victoria University of Technology, Melbourne City, 2002.
MR 2016992
[16] Ellouze I., Hammami M. A.:
Practical stability of impulsive control systems with multiple time delays. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 3, 341–356.
MR 3098457