Previous |  Up |  Next

Article

Title: Time regularity of generalized Navier-Stokes equation with $p(x,t)$-power law (English)
Author: Sin, Cholmin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1017-1056
Summary lang: English
.
Category: math
.
Summary: We show time regularity of weak solutions for unsteady motion equations of generalized Newtonian fluids described by $p(x,t)$-power law for $p(x,t)\geq (3n+2)/(n+2)$, $n\geq 2,$ by using a higher integrability property and fractional difference method. Moreover, as its application we prove that every weak solution to the problem becomes a local in time strong solution and that it is unique. (English)
Keyword: weak solution
Keyword: time regularity
Keyword: generalized Newtonian fluid, variable exponent
MSC: 35D30
MSC: 35D35
MSC: 35K92
MSC: 76A05
DOI: 10.21136/CMJ.2023.0033-22
.
Date available: 2023-11-23T12:20:24Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151946
.
Reference: [1] Abbatiello, A., Bulíček, M., Kaplický, P.: On the existence of classical solution to the steady flows of generalized Newtonian fluid with concentration dependent power-law index.J. Math. Fluid Mech. 21 (2019), Article ID 15, 22 pages. Zbl 1414.35160, MR 3911730, 10.1007/s00021-019-0415-8
Reference: [2] Acerbi, E., Mingione, G.: Regularity results for stationary electro-rheological fluids.Arch. Ration. Mech. Anal. 164 (2002), 213-259. Zbl 1038.76058, MR 1930392, 10.1007/s00205-002-0208-7
Reference: [3] Acerbi, E., Mingione, G.: Gradient estimates for the $p(x)$-Laplacian system.J. Reine Angew. Math. 584 (2005), 117-148. Zbl 1093.76003, MR 2155087, 10.1515/crll.2005.2005.584.117
Reference: [4] Antontsev, S. N., Rodrigues, J. F.: On stationary thermo-rheological viscous flows.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 52 (2006), 19-36. Zbl 1117.76004, MR 2246902, 10.1007/s11565-006-0002-9
Reference: [5] Veiga, H. Beirão da, Kaplický, P., Růžička, M.: Boundary regularity of shear thickening flows.J. Math. Fluid Mech. 13 (2011), 387-404. Zbl 1270.35360, MR 2824490, 10.1007/s00021-010-0025-y
Reference: [6] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129. Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802
Reference: [7] Berselli, L. C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities.J. Math. Fluid Mech. 12 (2010), 101-132. Zbl 1261.35118, MR 2602916, 10.1007/s00021-008-0277-y
Reference: [8] Breit, D., Mensah, P. R.: Space-time approximation of parabolic systems with variable growth.IMA J. Numer. Anal. 40 (2020), 2505-2552. Zbl 1466.65122, MR 4167054, 10.1093/imanum/drz039
Reference: [9] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: The dimension of the attractor for the 3D flow of a non-Newtonian fluid.Commun. Pure Appl. Anal. 8 (2009), 1503-1520. Zbl 1200.37074, MR 2505283, 10.3934/cpaa.2009.8.1503
Reference: [10] Bulíček, M., Ettwein, F., Kaplický, P., Pražák, D.: On uniqueness and time regularity of flows of power-law like non-Newtonian fluids.Math. Methods Appl. Sci. 33 (2010), 1995-2010. Zbl 1202.35152, MR 2744616, 10.1002/mma.1314
Reference: [11] Bulíček, M., Kaplický, P., Pražák, D.: Uniqueness and regularity of flows of non-Newtonian fluids with critical power-law growth.Math. Models Methods Appl. Sci. 29 (2019), 1207-1225. Zbl 1425.35147, MR 3963639, 10.1142/S0218202519500209
Reference: [12] Bulíček, M., Pustějovská, P.: On existence analysis of steady flows of generalized Newtonian fluids with concentration dependent power-law index.J. Math. Anal. Appl. 402 (2013), 157-166. Zbl 1308.76068, MR 3023245, 10.1016/j.jmaa.2012.12.066
Reference: [13] Bulíček, M., Pustějovská, P.: Existence analysis for a model describing flows of an incompressible chemically reacting non-Newtonian fluid.SIAM J. Math. Anal. 46 (2014), 3223-3240. Zbl 1308.35199, MR 3262601, 10.1137/130927589
Reference: [14] Burczak, J., Kaplický, P.: Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences.Commun. Pure Appl. Anal. 15 (2016), 2401-2445. Zbl 1362.35160, MR 3565947, 10.3934/cpaa.2016042
Reference: [15] Crispo, F.: A note on the existence and uniqueness of time-periodic electro-rheological flows.Acta Appl. Math. 132 (2014), 237-250. Zbl 1295.76004, MR 3255040, 10.1007/s10440-014-9897-9
Reference: [16] Diening, L.: Theoretical and Numerical Results for Electrorheological Fluids: Ph. D. Thesis.Universität Freiburg, Freiburg im Breisgau (2002). Zbl 1022.76001
Reference: [17] Diening, L., Růžička, M.: Strong solutions for generalized Newtonian fluids.J. Math. Fluid Mech. 7 (2005), 413-450. Zbl 1080.76005, MR 2166983, 10.1007/s00021-004-0124-8
Reference: [18] Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motion of generalized Newtonian fluids.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. Zbl 1253.76017, MR 2668872, 10.2422/2036-2145.2010.1.01
Reference: [19] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19. AMS, Providence (1998). Zbl 0902.35002, MR 1625845, 10.1090/gsm/019
Reference: [20] Frehse, J., Schwarzacher, S.: On regularity of the time derivative for degenerate parabolic systems.SIAM J. Math. Anal. 45 (2015), 3917-3943. Zbl 1325.35108, MR 3411724, 10.1137/141000725
Reference: [21] Frigeri, S., Grasselli, M., Pražák, D.: Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity.J. Math. Anal. Appl. 459 (2018), 753-777. Zbl 1382.35218, MR 3732553, 10.1016/j.jmaa.2017.10.078
Reference: [22] Grasselli, M., Pražák, D.: Regularity results for a Cahn-Hilliard-Navier-Stokes system with shear dependent viscosity.Z. Anal. Anwend. 33 (2014), 271-288. Zbl 1297.35185, MR 3229587, 10.4171/ZAA/1511
Reference: [23] Kaplický, P.: Time regularity of flows of non-Newtonian fluids.IASME Trans. 2 (2005), 1232-1236. MR 2214014
Reference: [24] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York (1969). Zbl 0184.52603, MR 0254401
Reference: [25] Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs.Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). Zbl 0851.35002, MR 1409366, 10.1201/9780367810771
Reference: [26] Málek, J., Nečas, J., Růžička, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $p\geq 2$.Adv. Differ. Equ. 6 (2001), 257-302. Zbl 1021.35085, MR 1799487, 10.57262/ade/1357141212
Reference: [27] Naumann, J., Wolf, J., Wolff, M.: On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions.Commentat. Math. Univ. Carol. 39 (1998), 237-255. Zbl 0940.35046, MR 1651938
Reference: [28] Pastukhova, S. E.: Nonstationary version of Zhikov's compensated compactness lemma and its application to the solvability of the generalized Navier-Stokes equations.Dokl. Math. 81 (2010), 66-71. Zbl 1202.35161, MR 2675418, 10.1134/S1064562410010199
Reference: [29] Růžička, M.: Electrorheological Fluid: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748. Springer, Berlin (2000). Zbl 0962.76001, MR 1810360, 10.1007/BFb0104029
Reference: [30] Růžička, M.: Modeling, mathematical and numerical analysis of electrorheological fluids.Appl. Math., Praha 49 (2004), 565-609. Zbl 1099.35103, MR 2099981, 10.1007/s10492-004-6432-8
Reference: [31] Simon, J.: Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval.Ann. Mat. Pura Appl., IV. Ser. 157 (1990), 117-148. Zbl 0727.46018, MR 1108473, 10.1007/BF01765315
Reference: [32] Sin, C.: The existence of strong solutions to steady motion of electrorheological fluids in 3D cubic domain.J. Math. Anal. Appl. 445 (2017), 1025-1046. Zbl 1352.35124, MR 3543809, 10.1016/j.jmaa.2016.07.019
Reference: [33] Sin, C.: The existence of weak solutions for steady flows of electrorheological fluids with nonhomogeneous Dirichlet boundary condition.Nonlinear Anal., Theory Methods Appl., Ser. A 163 (2017), 146-162. Zbl 1375.35400, MR 3695973, 10.1016/j.na.2017.06.014
Reference: [34] Sin, C.: Boundary partial $C^{1,\alpha}$-regularity for stationary shear thickening flows in 3D.J. Math. Fluid Mech. 20 (2018), 1617-1639. Zbl 1404.35080, MR 3877488, 10.1007/s00021-018-0379-0
Reference: [35] Sin, C.: Global regularity of weak solutions for steady motions of electrorheological fluids in 3D smooth domain.J. Math. Anal. Appl. 461 (2018), 752-776. Zbl 1387.35082, MR 3759566, 10.1016/j.jmaa.2017.10.081
Reference: [36] Sin, C.: Boundary partial regularity for steady flows of electrorheological fluids in 3D bounded domains.Nonlinear Anal., Theory Methods Appl., Ser. A 179 (2019), 309-343. Zbl 1404.35079, MR 3886635, 10.1016/j.na.2018.08.009
Reference: [37] Sin, C.: Local higher integrability for unsteady motion equations of generalized Newtonian fluids.Nonlinear Anal., Theory Methods Appl., Ser. A 200 (2020), Article ID 112029, 23 pages. Zbl 1450.35225, MR 4111765, 10.1016/j.na.2020.112029
Reference: [38] Sin, C., Baranovskii, E. S.: Hölder continuity of solutions for unsteady generalized NavierStokes equations with $p(x,t)$-power law in 2D.J. Math. Anal. Appl. 517 (2023), Article ID 126632, 31 pages. Zbl 1498.35438, MR 4486161, 10.1016/j.jmaa.2022.126632
Reference: [39] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). Zbl 0983.35004, MR 1928881, 10.1007/978-3-0348-8255-2
Reference: [40] Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis.Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). Zbl 0568.35002, MR 0769654
Reference: [41] Zhikov, V. V.: New approach to the solvability of generalized Navier-Stokes equations.Funct. Anal. Appl. 43 (2009), 190-207. Zbl 1271.35061, MR 2583638, 10.1007/s10688-009-0027-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo